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ABSTRACT 
 Geographically diversified VRE portfolios can be 

used to smooth out the volatility of VRE output ramps. 
This study, using Taiwan as case study, developed 
efficient frontiers of optimal VRE portfolios to minimize 
the volatility for each possible level of total installed VRE 
capacity that can meet 10%, 20% and 30% of electricity 
demand. Our analysis shows that optimal portfolios are 
also beneficial to reduce the magnitude of extreme 
downward ramp events, which are sudden losses in VRE 
power outputs. We specifically investigated hourly 
extreme ramps that are expected to occur on average 
once-every-three-year. They are 13-30 % of each unit of 
installed VRE capacity for optimal VRE portfolios, which 
are significantly smaller than that (20-64%) for most 
individual VRE assets. This result helps to manage risks 
associated with extreme ramp events in power system 
operation. To capture the benefits associated with 
optimal portfolios, it is recommended for policy-makers 
to coordinate the investment and development of VRE 
assets across multiple locations.  
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NOMENCLATURE 

Abbreviations  

EVA extreme value analysis 
GEV generalized extreme value 
MVP mean-variance portfolio 
VRE variable renewable electricity 

Symbols  

xp total installed VRE capacity needed in 
the portfolio (MW) 

xi 
installed capacity variable of each 
VRE asset (MW) 

σp,ramp portfolio ramp volatility 

X vector of installed capacity variable 
per VRE asset 

𝐜𝐜𝐜𝐜𝐜𝐜𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 covariance matrix of normalized 
ramp between different assets 

xmax,i 
geographical potentials per VRE asset 
(MW) 

𝜇𝜇i,N normalized mean output per VRE 
asset 

D Taiwan’s electricity demand in 2030 
(290.6 TWh) 

L required VRE penetration in 
electricity demand 

σp,Nramp normalized portfolio ramp volatility 

Op,N(t) normalized portfolio output at time 
step t 

Oi,N(t) normalized output per VRE asset at 
time step t 

Rp,N(t) normalized portfolio ramp at time 
step t 

z random extreme event z 

G(z) 
cumulative probability density 
function of a random extreme event 
z 

𝜇𝜇 location parameter 
𝜎𝜎 scale parameter 
𝜉𝜉 shape parameter 

T (z) return period of a random extreme 
event z 

B block period (month)  
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1. INTRODUCTION 
To achieve the Paris Agreement target of limiting the 

global mean temperature increase to 1.5-2 °C, 
decarbonization of the electric power sector, including 
large-scale development of variable renewable 
electricity (VRE) technologies such as wind and solar is 
key. Due to their variable and uncertain nature VRE 
technologies pose challenges in power system operation. 
The sudden ramp-up and ramp-down of VRE outputs 
(which are increases or decreases in power outputs) 
necessitate additional back-up capacity, operating 
reserves and other flexibility resources to ensure 
generation adequacy and system reliability, resulting in 
so-called “integration costs” [7].  

One effective way to reduce the impact of VRE ramps 
is to develop geographically diversified VRE portfolios, 
which smooth out output ramps from individual VRE 
assets. Previous studies [4, 6] have applied mean-
variance portfolio (MVP) analysis to obtain the efficient 
frontier of optimal VRE portfolios, where the portfolio 
volatility (i.e. standard deviation) of output ramps is 
minimized for each attainable (expected) output level. 
Although optimal VRE portfolios are helpful to reduce 
the frequency and magnitude of the majority of ramps, 
their effect on extreme ramps is yet unclear. Due to the 
non-Gaussian fat-tailed distribution of VRE ramps, low-
order statistics (e.g. mean and variance) are insufficient 
to capture extreme ramps in terms of the distribution’s 
tail behavior [1, 5]. As rare but high-magnitude events, 
extreme ramps can cause large disruptions in power 
supply and threaten generation adequacy, when 
availability of back-up capacity and operating reserves in 
the system is low and when VRE’s share in the electricity 
generation mix is high. This is particularly an issue for 
isolated or islanding power systems which have limited 
access to flexibility resources (e.g. storage, dispatchable 
power plants, demand-side response) in absence of 
interconnection [3]. Analysis of extreme ramp events in 
VRE portfolios is thus of importance to support the 
planning and operation of power systems, especially 
when optimal portfolios are considered as a promising 
solution to facilitate the integration of VRE.  

 
This study aims to investigate extreme hourly ramp 

events in optimal VRE portfolios1 through extreme value 
analysis (EVA). EVA is a statistical branch specialized in 
assessing the tail behavior of the distribution. In the 
context of extreme wind ramps, we focus on downward 
                                                           

1 It is important to stress that this study does not aim to minimize extreme 
ramp events in VRE portfolios, which can be achieved through building up 
portfolios based on high-order statistics (e.g. skewness and kurtosis). These 

ramps rather than upward ramps. This is because unlike 
upward ramps that can be solved by curtailment, 
downward ramps are more relevant for generation 
adequacy. Although previous EVA-based analyses have 
analyzed extreme ramps for individual wind farms [1, 3], 
this study represents the first attempt of applying EVA to 
VRE portfolios. The Taiwan region of China is selected as 
the case study area due to its high relevance. Taiwan is 
the 21st largest economy and 14th largest electricity-
consuming region in the world. It has a large islanding 
power system isolated from mainland China, relying 
heavily on energy imports. As Taiwan has set ambitious 
2030 renewable targets to phase out nuclear power, 
boost energy security and reduce CO2 emissions, this 
year is chosen as target year for the analysis.    

2. THEORY 

2.1 Mean-variance portfolio analysis 

The MVP analysis originates from financial theory. It 
is used to select individual financial assets to formulate a 
series of optimal portfolios subject to the trade-off 
between (expected) return and risk. The optimal 
portfolios are positioned on an “efficient frontier”, 
where risk is minimized at a given return, or return is 
maximized at a given risk. In the context of energy 
planning, MVP often focuses on minimizing the ramp 
volatility of VRE portfolios for each attainable (expected) 
portfolio output, when the total installed VRE capacity is 
given [6]. This results in the efficient frontier of optimal 
VRE portfolios that captures the geographical smoothing 
effect. [4] have formulated an alternative but equivalent 
framework. It minimizes the portfolio’s ramp volatility 
for a possible range of total installed VRE capacity levels, 
when VRE’s penetration in electricity demand is given. 
This study follows [4]’s framework with some 
modifications. 

2.2 Extreme value analysis 

   EVA determines a stable asymptotical distribution of 
the tail behavior through sampling many extreme values 
of a random variable [2]. It requires stationarity of the 
sampled data. Extreme ramps sampled from a time 
series of portfolio ramps (being the first difference of a 
time series of portfolio outputs) are assumed to meet 
this requirement, since differencing increases 
stationarity [3]. The sampling of extreme values can be 

portfolios are not necessarily optimal in terms of the trade-off between portfolio 
volatility and expected portfolio output.  
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either based on the block maxima (or minima) method or 
the peaks over threshold method [3]. Due to the practical 
difficulty in selecting a proper threshold for each optimal 
portfolio, this study opts to use the former method. The 
block (B) is a predefined time period, which can be a year, 
a month or a day. The sampled extreme values (being the 
maximum value per block) are fit by the generalized 
extreme value (GEV) distribution. The cumulative 
probability density function of the GEV distribution for a 
random extreme event z is  

G(z) = exp �− �1 + ξ(
z − μ
σ

)��
+

−1/ξ
  

, where G(z) is cumulative probability density function of random 
variable z;  μ (> −∞),σ (> 0),  ξ(< ∞)  are respectively the 
location, scale and shape parameter; y+ = max {y, 0} [2]. 

The quantile z of the GEV distribution can be interpreted 
as a return level associated with a return period T (z) [3]: 

T(z) = B
1−G(z)

  

In other words, an extreme value with a magnitude no 
less than z is expected to occur on average once every 
return period T (z). Based on the inverse function of G (z), 
the expected extreme event associated with any return 
period can be estimated. 

3. METHOD 
The method of the present analysis consists of two 

main steps, and they were performed through ArcGIS 
and RStudio. In the first step, we developed the efficient 
frontiers of optimal VRE portfolios for Taiwan, which 
consist of three VRE technologies (onshore wind, 
offshore wind and solar PV). In the second step, we fit 
extreme downward ramps sampled from the time series 
of hourly portfolio ramp to the GEV distribution. The 
fitted GEV distribution enabled us to estimate the 
expected extreme ramp event that occurs on average 
once every three years. The method is briefly elaborated 
below: 

3.1 Develop optimal VRE portfolios 

          Firstly, we divided the entire Taiwan region 
(including exclusive economic zone adjacent to the 
territorial sea) into 45 equal-sized (0.5° *0.675°) grid 
cells. As such, each VRE technology type at a specific grid 
cell becomes an individual VRE asset. Secondly, based on 
NASA MERRA meteorological reanalysis data of historical 

hourly wind speed and solar irradiance between 2000 
and 2015, we obtained the 16-year time series data of 
hourly outputs and output ramps for each VRE asset 
through a power conversion model [9]. The hourly 
outputs and output ramps were normalized to the scale 
of 0-1 (on the basis of each unit of installed capacity) to 
enable comparison. We further characterized the mean 
and standard deviation of normalized hourly outputs and 
output ramps for each VRE asset, and the covariance 
matrix between different assets. Thirdly, taking into 
account various geographical constraints and different 
land cover types, we determined the geographical 
potentials (maximum capacity that can be installed) for 
each VRE asset. Fourthly, we performed MVP analysis to 
obtain the efficient frontier curves of optimal portfolios, 
based on a copperplate assumption. The objective is to 
minimize the portfolio volatility for each possible level of 
total installed VRE capacity, to meet 10%, 20% and 30% 
penetration levels of VRE in Taiwan’s electricity demand 
in 2030 (290.6 TWh). The mathematical formulation of 
the optimization is as follows: 

The total installed VRE capacity needed in the portfolio 
(xp) is the sum of installed capacity variable of each VRE 
asset (xi): 

xp = ∑ xi  

The portfolio ramp volatility (σp,ramp) is the product of 
the vector of installed capacity variable per VRE asset (X), 
its transpose vector (𝐗𝐗𝐓𝐓), and the covariance matrix of 
normalized ramp between different assets (𝐜𝐜𝐜𝐜𝐜𝐜𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍):  

σp,ramp
2 = 𝐗𝐗𝐜𝐜𝐜𝐜𝐜𝐜𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐗𝐗𝐓𝐓  

𝐗𝐗 is solved by the minimization of σp,ramp
2 , which is 

subject to two constraints.  

Firstly, installed capacity per VRE asset must be capped 
by its geographical potentials: 

xi ≤ xmax,i  

Secondly, the portfolio output must reach the required 
VRE penetration level (10%, 20% and 30%) in electricity 
demand: 

8760∑μi,N  xi ≥ DL  

,where μi,N  is the normalized mean output per VRE asset; D is 
Taiwan’s electricity demand in 2030, which is officially forecasted at 
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290.6 TWh; L is the required VRE penetration level (which is set at 
10%, 20% and 30% in this study). 

To enable comparison on the basis of per unit installed 
capacity, the normalized portfolio ramp volatility 
(σp,Nramp) was calculated via:  

σp,Nramp =
�σp,ramp2

xp
   

The efficient frontier curves were obtained by plotting 
the normalized portfolio ramp volatility against the total 
installed VRE capacity for all optimal portfolios.  

3.2 Fit generalized extreme value distribution 

Firstly, based on the share of each VRE asset in the 
portfolio, the 16-year time series of normalized hourly 
portfolio outputs and output ramps were determined for 
optimal portfolios: 

Op,N(t) =  1
xp
∑ xi Oi,N(t)  

Rp,N(t) =  Op,N(t) − Op,N(t−1)  

, where Op,N(t)  and Oi,N(t)  are respectively the normalized 
portfolio output and output of an individual VRE asset at time step 
t; Rp,N(t) is the normalized portfolio ramp at time step t. 

Secondly, we sampled extreme ramps from the time 
series of normalized hourly portfolio ramps based on the 
block maxima method using a monthly block size. The 
sample only includes the largest downward ramp event 
for each monthly block period. This results in 192 sample 
points per optimal portfolio. Thirdly, we fit the sampled 
data to the GEV distribution for each optimal portfolio, 
using L-moment estimation method. Being the linear 
combination of order statistics, the L-moment method 
performs better in parameter estimation for fat-tailed 
distributions than other conventional methods such as 
the maximum likelihood estimation method [8]. The 
fitness of the GEV distribution was assessed descriptively 
for selected portfolios. Lastly, taking a three-year return 
period as example2, we estimated the expected extreme 
ramp event that occurs on average once every three year 
(referred to as “once-in-three-year extreme ramp”) for 
each optimal VRE portfolio positioned on the efficient 
frontiers. Based on the same procedure, we estimated 

                                                           
2 We consider a reliable power system should be able to manage once-in-

three-year extreme events. However, the maximum level of extreme ramps that 
should be managed by the power system and its corresponding return period 

the once-in-three-year extreme ramp for each individual 
VRE asset to enable comparison.  

4. RESULTS 

4.1 Mean-variance analysis  

We present the efficient frontier curves of optimal 
VRE portfolios that serve 10%, 20% and 30% of electricity 
demand in Figure 1. Each point positioned on the 
efficient frontiers represents an optimal portfolio. These 
portfolios are efficient in the sense that for a given total 
installed capacity (corresponding to meet 10%, 20% and 
30% of electricity demand) the normalized ramp 
volatility is minimized and for a given normalized ramp 
volatility, the total installed capacity is minimized. A clear 
trade-off can be observed within the same efficient 
frontier, i.e. reducing the normalized portfolio ramp 
volatility must be at the cost of increased total installed 
capacity to meet the required VRE penetration in 
demand. To meet 10%, 20% and 30% of electricity 
demand, the required minimum total installed VRE 
capacity are 6888-8641, 14344-17316 and 22647-26552 
MW, respectively. However, the selection of the installed 
capacity level depends on the policy preference to the 
normalized portfolio ramp volatility. For convenience, 
we refer to the portfolio positioned at the top-left point 
of the efficient frontier as the min-capacity portfolio and 
the bottom-right point as the min-volatility portfolio.   

The trade-off between the normalized portfolio volatility 
and the total installed capacity is more obvious for the 
efficient frontier associated with a higher VRE 
penetration (30% versus 20% and 10%), reflected in the 
overall steepness of the curves. This can be explained by 
the necessary inclusion of more assets with lower mean 
normalized output in portfolios in order to meet a higher 
penetration of electricity demand.  

depend on the reliability standards, the demand profile and the value of lost 
load. They can only be determined through power system modelling. 
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Figure 1. Efficient frontiers of optimal VRE portfolios that 
serve 10%, 20% and 30% of electricity demand 

4.2 Extreme value analysis  

  For demonstrative purposes, the return plot for the 
min-capacity portfolio that serves 10% of electricity 
demand is presented in Figure 2. It is used to 
descriptively assess the fitness of the GEV distribution to 
extreme ramps. The return plot shows (both empirical 
and fitted) relationships between the return period and 
return level of extreme ramps. The dots, solid and dotted 
lines respectively represent the sampled extreme ramps, 
the GEV distribution-fitted extreme ramps and the 95% 
confidence interval. GEV distribution exhibits overall 
good fitness to the majority of sampled extreme ramps 
until the return level reaches ~35% of each unit of 
installed capacity (corresponding to a return period of 50 
months). This suggests that GEV predicts better for the 
normal occurrence of extremes than “extreme 
extremes”, due to the very limited sample size of the 
latter. Therefore, the use of EVA to estimate once-in-
three-year extreme ramps (which belong to “normal 
extremes”) in this study is justifiable. 

 
Figure 2. Return plot for the min-capacity portfolio that 
serves 10% of electricity demand 
 
  We present the estimated once-in-three-year extreme 
ramp events for optimal VRE portfolios positioned on the 
efficient frontiers in Figure 3. The magnitude of extreme 
ramps in terms of a division of each unit of installed VRE 
capacity decreases with increased total installed capacity 
along the efficient frontier. This also suggests a clear 
trade-off between the magnitude of extreme ramps and 
the total installed capacity for optimal portfolios.  
 
   To enable comparison, we also present the estimated 
extreme ramps and geographical potentials for each 
individual VRE asset in Figure 3. Although a few onshore 
and offshore wind assets exhibit smaller extreme ramps 
(based on historic data) than the min-capacity portfolios, 
they are still much larger than the min-volatility 
portfolio. The small geographical potentials of these 
assets also limit their participation in the optimal 
portfolios. The magnitudes of extreme ramps range 
between 13-30% of each unit of installed capacity, which 
are smaller than most VRE assets (20-64 %). This clearly 
shows additional benefits associated with diversification. 
Not only do optimal VRE portfolios reduce the volatility 
of VRE, they are also effective in reducing the magnitude 
of extreme ramp events.  
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Figure 3. Once-in-three-year extreme ramps of optimal 
VRE portfolios (colored lines) and individual VRE assets 
(dots) 

5. CONCLUSION AND DISCUSSION 
Geographically diversified VRE portfolios can be used 

to smooth out the volatility of VRE output ramps. Using 
Taiwan as a case study area, this study developed the 
efficient frontiers of optimal VRE portfolios to minimize 
the (normalized) portfolio ramp volatility, for each 
possible level of total installed VRE capacity that can 
meet 10%, 20% and 30% of electricity demand. The 
analysis of extreme ramp events in optimal VRE 
portfolios using EVA shows that optimal portfolios are 
also beneficial to reduce the magnitude of extreme ramp 
events. The estimated once-in-three-year extreme 
ramps range between 13-30% (of each unit of installed 
capacity) for optimal VRE portfolios, which is significantly 
smaller than the estimated extreme ramps (20-64%) for 
most VRE assets in Taiwan. This result helps to manage 
risks associated with extreme ramp events in power 
system operation. To capture the benefits associated 
with optimal portfolios, it is recommended for policy-
makers to coordinate the investment and development 
of VRE assets at different locations. Accordingly, the grid 
infrastructure in Taiwan should be reinforced and 
extended to enable the realization of optimal VRE 
portfolios. This is of particular importance, given the past 
outages in Taiwan due to unreliable grid infrastructure.       

 

The present work of this study is based on two main 
assumptions, i.e. copperplate representation of 
transmission grid and stationarity of VRE output ramps. 
These two assumptions could be relaxed in future 
research.    
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