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ABSTRACT 
 This paper presents a cooperative estimation 

approach for SOC and SOH with the consideration of 
temperature and aging. The co-estimation is realized by 
using a co-estimator which is a combination of a model-
based algorithm and a data-driven technique for joint 
SOC and SOH estimation, and by a developed thermo-
electro-aging coupling model which can reflect the 
dynamic and static characteristics of the parameters 
related to the SOC and SOH. In this co-estimator, 
unscented Kalman filter (UKF) and long short-term 
memory recurrent neural network (LSTM RNN) are 
designed to estimate SOC and SOH respectively and 
update mutually as temperature and current input; an 
optimized dual-time scale strategy based on slow-
varying SOH and fast-varying SOC characteristics is 
implemented. Simulation results indicate that compared 
with the popular dual EKF and the UKF, the proposed 
algorithm gains higher accuracy and faster error 
convergence speed, and its estimate error for SOC and 
SOH are statistically less than 0.4% and 0.21% 
respectively under a wide range of condition.     
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NONMENCLATURE 

Abbreviations  

SOC State of charge  

SOH State of health 

LSTM RNN 
Long short-term memory recurrent 
neural network 

EKF Extended Kalman filter 
UKF Unscented Kalman filter 
MAE Mean absolute error  
C-rate Discharge rate 

1. INTRODUCTION 
The lithium-ion battery has been widely used in 

modern technologies, e.g. smart grid and electric 
vehicles, for its advantages of small size, high energy 
density, long life, and no memory effect [1]. Accurate 
online estimation of the SOC (state of charge) plays a 
pivotal role in the battery management system for 
protecting the battery from over-charge/discharge 
which causes battery degradation and potentially 
hazardous situations. The SOC has an intimate 
connection with the SOH (state of health), which 
indicates capacity degradation due to repeated cycles or 
long-term storage. As battery ages, SOC-only estimation, 
such as Coulomb counting, unscented Kalman filter 
(UKF), extended Kalman filter (EKF) can cause large 
errors, and inaccurate SOC, in turn, can mislead SOH 
calibration [2]. Therefore, the joint estimation of SOC 
and SOH is advantageous. Dual SOC and SOH estimation 
strategies such as PI observer [3], dual EKF [4], and FPGA 
[5] to estimate SOC and SOH simultaneously have been 
presented and improved accuracy of SOC estimation. 
However, when the temperature dependence of 
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SOC/SOH is poorly considered or overlooked, the dual 
estimators tend to produce divergent errors as 
temperature varies: the deviation of SOC can be over 

2.8% at 40 ℃, and over 5.2% at 60 ℃ [2]. Temperature 
predominates both battery electrical characteristics and 
degradation behaviors by stimulating physical particle 
movement and electrochemical side effects which is 
necessary to be examined in both SOC and SOH 
estimation.  

 This paper aims at developing a cooperative SOC 
and SOH estimation strategy considering thermal and 
aging activities to optimize the precision of SOC/SOH 
estimation under a wide range of condition and lifespan. 
A thermo-electro-aging coupling model is first developed 
to accurately reflect the dynamic/static characteristics 
and coupling relationships of SOC and SOH related 
parameters, and reduce computation of models. 
Considering the facts that SOC can be explicitly resolved 
by electrical model, while data-driven method with 
simplicity and sufficient accuracy is more practical for 
SOH prediction than existing computationally heavy 
aging models, it is appropriate that a model-based 
algorithm and a data-driven method are selected 
separately and integrated cooperatively to observe SOC 
and SOH jointly. The UKF algorithm (unscented Kalman 
filter) and the intelligent LSTM RNN (long short-term 
memory recurrent neural network) are therefore chosen 
to estimate SOC and SOH correspondingly while 
promoting mutually in regard to variables of 
temperature and current. The main idea of the 
cooperative estimator is: due to the mutual update 
between the SOC and SOH estimators, model 
parameters varying with temperature and aging factors, 
such as temperature, current, SOC and throughout, are 
calibrated continuously and quantified accurately, and 
therefore state observer with more favorable 

performance can be obtained. Furthermore, a dual time-
scale strategy is applied in the cooperative estimation 
algorithm to separate the update frequency of SOC and 
SOH observers so as to adapt to the fast-varying SOC and 
slow-changing SOH, i.e., the SOH estimator works in slow 
speed while SOC estimator fast speed. 

2.  THERMO-ELECTRO-AGING MODEL FOR LITHIUM-
ION BATTERY  

The lithium-ion battery is a very complex system with 
highly coupling electrical, thermal, and degradation 
behaviors. Based on the electrothermal characteristics 
and working principles of the battery, a coupling model 
is developed by integrating an electrical submodel, a 
thermal submodel, and an aging submodel to give 
comprehensive information on the dynamic and static 
characteristics of the battery (Fig. 1). Current and 
temperature are detected as inputs to the model, and 
the specific structure of each submodel is introduced 
below. 

For the electrical submodel, a widely used 2RC 
equivalent circuit [6] is referred to represent electric 
behavior of lithium-ion batteries. Based on the Coulomb 
counting equation and Kirchhoff's law, the state space 
equation of battery is obtained as: 
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where Ro is internal ohmic resistance, Rb*Cb is diffusion 
impedance, Rp*Cp is charge transfer impedance, Ts 

denotes sample time which is 1 second in this case, η 
denotes the coulomb efficiency. η is simplified as a 
constant which is 1 when charging and 0.985 when 
discharging. The load voltage UB is taken as the observed 
quantity: 
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Fig. 1. Layout of the thermo-electro-aging coupling model. (a) Signals circulating among submodels of the battery; (b) the 
realization of the coupling model on MATLAB/Simulink platform 
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The open circuit voltage (Uoc) is found as a nonlinear 
function of SOC which can be represented by polynomial:  
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   Internal resistances change with both SOC and 

temperature, which can be expressed in binary Taylor 

expansion formula as:   
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To facilitate the analysis of the thermal submodel, 
several reasonable assumptions are first made: (i) the 
temperature is uniform inside the battery; (ii) the radiant 
heat is ignored; (iii) the specific heat (Cp) and heat 
transfer coefficient (h) of the battery are constant. 
According to these assumptions, the heat conservation 
equation is easily established as: 
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Where m is the battery mass, s is the battery area, 
and Tamb is the ambient temperature. The heat source 
term Q is the sum of polarization heat and entropic heat 
according to Bernardi model[7]: 
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For power battery, the capacity attenuation is 
generally used to indicate SOH as: 
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 However, eq.7 is inconvenient for direct use of SOH 
estimation, and thus an Arrhenius equation-based 
battery life model mapping aging factors to SOH is 
referred [8] as: 
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Where R is gas constant, N is cycle numbers, z is a 
factor which has an experienced value of 0.55, An is the 
throughput which can be calculated as: 

 dto _n ==  ICCSNA real  (9) 

Pre-exponential factor (B) can be fitted as an 
exponential function of discharge rate, and activation 
energy (Ea) is a linear function of discharge rate. It is 
beneficial to add correction factors (k1~k6) to determine 
Ea (eq.10) and B (eq.11) for calibrating the characteristics 
difference between batteries. So far, the physical model 
has been built as a whole. 

 21a krate-k += CE  (10) 
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A previous test dataset collected from an 18650-type 
lithium-ion battery is used to identify the model. 
Procedures described in [9] were followed to identify 
internal resistance and capacitance by discharge 
experiment test data. Least squares method is utilized to 
optimize parameters by minimizing the root mean 
squared error (RMSE) of the measurements and model 

response. The model is built in Simulink environment, 

and the simulation results in the 1 C cycling test at 23℃ 

is shown in Fig. 2, which show good matches between 
the model and measurements.  

3. COOPERATIVE ESTIMATION OF SOC AND SOH 
BASED ON UKF AND LSTM RNN 

 
Model-based UKF and intelligent LSTM RNN are 

selected to estimate SOC and SOH separately. The UKF-
based SOC estimator has been studied in [10], so we’d 
like to focus on the SOH estimation method and the 
combination of the two algorithms.  

Battery aging is significantly influenced by dynamic 
operation conditions and historical states. LSTM RNN has 

(a) Load voltage results  

 
(b) Battery temperature results 

 
(c) SOH results 

 
Fig. 2. The coupling model simulation vs. experiment 
measurement.  
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a proven capability to perform mapping in highly 
nonlinear systems and well-designed structure to 
remember historical information for a long time. The 
LSTM RNN is trained by over 3500 samples under 
different temperatures and discharge rates to map 
between the input variables (C-rate, throughput, SOC, 
and ambient temperature) and the SOH. The mini-batch-
based back propagation optimization algorithm is 
introduced to train LSTM RNN with a mini-batch size 40 
and learning rate of 0.08 in this case.  

It usually takes dozens of hours for observable SOH 
shift, while few seconds for SOC variation. Estimating 
SOC and SOH on the same time scale is inefficient. In 
order to alleviate this problem, the UKF and the LSTM 
RNN are designed to work at different time-scale with 
tolerable estimation error. f and s are defined as the 
timer indicators of SOC (fast) observer and SOH (slow) 
observer respectively. Define the time-scale separation 
indicator of two timer as 

 sfN /=  (12) 

Whenever a SOC or SOH estimation process is 
finished, its corresponding timer is added. As UKF 
updates in micro steps, we define

Nss tt ,10, −=  to manage 

the macro step when the LSTM NN should step in. The 
time-scale of SOC and SOH is thus separated so as to 
adapt to the fast-varying SOC and slow-varying SOH. 
Fig.3 demonstrates the flow chart of the cooperative 
estimator of SOC and SOH based on UKF and LSTM RNN 
(shortly called as UKF-NN estimator hereinafter) 
proposed in this paper. On the fast time-scale, the UKF 
calculates the state and observation value according to 
state space equation (eq.1) and observation equation 

(eq.2). The load voltage difference between the 
measurement and calculation determines the covariance 
matrix (P) and Kalman matrix (K), which further define 
the estimated SOC. When the SOC estimate ends, the 
SOC timer increases. Whenever SOC timer counts to N, 
the SOH timer is updated and LSTM RNN starts to predict 
SOH and update model parameters. The SOH timer adds, 
and the updated model goes to the next step for SOC 
estimation. The process moves on to estimate SOC 
continuously and predict SOH periodically.         

4. SIMULATION AND RESULTS 

The validated coupling model and the UKF-NN 
estimator are constructed to verify the performance of 
the co-estimator (Fig. 4). Gaussian noises with standard 

deviations of 200 mA, 10 mV, and 0.05 ℃ are added to 
the measured current, voltage and temperature data, 
respectively, to simulate sensor noises. The validated 
coupling model is deemed as the object whose states are 
observed by estimator. A sequence of dynamic hybrid 
pulse load (see Fig. 5) collected from real EVs driving data 
is used.  
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(left) Fig. 5. Dynamic hybrid pulse load 

(right) Fig. 6. SOC estimation results of the UKF-NN vs. UKF 
when the SOH=0.82 

4.1. Comparison between the UKF-NN estimator with 
the UKF-based SOC estimator  
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During battery aging, the UKF-NN estimator can 
update parameters by periodically introducing the 
estimated SOH, so its SOC estimation accuracy is 
improved compared to the SOC-only estimator. A case 
simulates an aged battery whose SOH has fallen to 0.82, 
nearly retired, to compare the performance between the 
UKF-NN estimator and the SOC-only method, i.e. UKF, as 
shown in Fig. 6. The MAE (mean average error) of the 
UKF-NN estimator and UKF are 0.38% and 4.34% 
respectively which means a 4% accuracy improvement. 
Actually, the SOC-only estimator performs worse as 
further degradation happens. When the battery retires, 
the SOC estimation accuracy of the SOC-only estimator 
decreases to 85.2%, while of the UKF-NN estimator is 
98.3%. In a word, the co-estimation shows consistent 
reliability through the battery lifespan. 

4.2. Comparison between the UKF-NN estimator with 
dual EKF co-estimator  

The dual EKF is a commonly used technique which 
uses two EKF running in parallel to estimate SOC and SOH 
simultaneously. In order to investigate the performance 
of the proposed estimation methodology, the dual EKF 
method is also realized for comparison with 0.5 and zero 
initial error (see Fig. 7). the MAE and convergence speed 
of the UKF-NN estimator and dual EKF are statistically 
recorded in Table 2. As we can see, the MAE of the 
proposed method and dual EKF are 0.40%/0.29% and 
3.09%/2.38%, the convergence speed are 24/15 s and 
1600/1085 s separately, implying the proposed UKF-NN 
estimator performs far better than the dual EKF 
estimator and is more feasible for application. 

Table 1. MAE and convergence speed comparison between the 
UKF-NN estimator and dual EKF under 0.5/zero initial error. 

0.5/zero initial 
error 

MAE Convergence 
speed (s) 

Dual EKF 3.09%/2.38% 1600/1085 
UKF-NN 0.40%/ 0.29% 24/15 

4.3. Estimation results at different temperatures 

Because the ambient temperature changes rapidly 
and greatly introducing many uncertainties into battery 
property, it is necessary to examine the estimators’ 
adaptivity to various temperature. In this section, the 

results of SOC estimate in dynamic hybrid pulse load test, 
and the results of SOH estimate in cycling tests are 
illustrated at different temperatures for the UKF-NN 
estimator.  

Three cycles of dynamic hybrid pulse load are input 
to the verification system to evaluate the SOC estimation 
under a wide range of temperatures. SOC estimation 
results of the UKF-NN estimator at four ambient 

temperature conditions (-10, 0, 15, and 30 ℃ ) are 

shown in Fig. 8. As temperature increases, the SOC varies 
more dramatically. Nevertheless, the UKF-NN estimator 
firmly follows the real value, and its MAE is consistently 
less than 0.38% under four temperatures.  

Fig. 9 illustrates the SOH estimation when the 
battery is charged/discharged repeatedly by 1 C current 

at three temperatures which are extreme low (-10 ℃), 

room temperature (23 ℃) and extremely high (40 ℃). 

As the temperature increases, the SOH estimation error 
gradually increases: the MAE are 0.06%, 0.10% and 
0.21% from low to high temperature, which remain high 
accuracy for practical application. 

In a word, the proposed model-based and data-
driven cooperative SOC and SOH estimator achieves 
accurate and fast estimation under various operating 
conditions, which demonstrate the high performance of 
the method and its potential for real-time application 
with moderate chips.   

(a) 0.5 initial error 

Reference
Co-estimation
Dual EKF

 
(b) no initial error 

 

 

Co-estimation

Dual EKF

Fig. 7. The UKF-NN co-estimator vs. dual EKF with/without initiall 
error. Plot SOC estimation results (left column) and error (right 
column) under (a) 0.5 initial error, and (b) no initial error. 
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(a) T=-10 ℃ 

(b) T=23 ℃ 

(c) T=40 ℃ 

5.  CONCLUSION  
This work mainly proposes a cooperative estimation 

approach of state of charge and state of health for lithium-
ion batteries to handle issues of the complex degradation 
characteristics and temperature effects, which can cause 
deteriorating performance to states observer.  

The main contributions of this work are: (i) a novel 
thermo-electro-aging coupling model is developed to 
accurately reflect the coupling relationship and dynamic 
and static characteristics of parameters related to 
SOC/SOH; (ii) a model-based algorithm (unscented Kalman 

Filter) and a data-driven technique (long short-term 
memory recurrent neural network) are integrated as a 
cooperative estimator to observe SOC and SOH jointly to 
balance the accuracy and complexity of existing methods; 
(iii) effects of temperature and aging factors are captured 
by the carefully organized cooperative estimator.  

Simulation results verify the high-fidelity of the 
proposed methods against aging effects, temperature 
variation, and noises, which endow its promising 
application in practical use, such as EVs.  
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