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ABSTRACT 
Due to the introduced spatial-temporal uncertainty 

and flexibility of the increasing Electric vehicle (EV) 
charging load, distribution network operation will be 
greatly impacted by the large-scale EV charging power. 
This paper proposes a reliability assessment approach 
considering the stochastic EV charging and movement in 
an integrated power and traffic system. The improved 
sequential Monte Carlo method is applied to evaluate 
the reliability of distribution network. Based on a spatial-
temporal charging load model, the influence of different 
factors on the reliability for distribution network is 
analyzed in a case, including permeability and the ratio 
of trip chain, which provides a theoretical basis for the 
formulation of orderly charging strategies and the 
planning of charging stations. Furthermore, the reliability 
analysis considering the future distributed generators 
(DGs) and EVs development mode is given. 

Keywords: Electric vehicle (EV), charging load, reliability 
assessment, distribution network, improved Monte 
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Loss of load probability 
system average interruption frequency index 
system average interruption duration index 
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Travel times 
Charging duration time in i-th trip 
State of charge at time t 
Travel distance  
Power consumption per unit mileage 
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PEV
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Charging power 
Battery capacity 
A route set within sn road 
Electric vehicle permeability 
Distributed generator permeability 
Maximum number of MC simulations 

1. INTRODUCTION
To reduce greenhouse gas emissions by replacing

traditional combustion-engine driven vehicles, the 
increasing distributed generators (DGs) and moving 
electric vehicles (EVs) are introduced into distribution 
network [1]. Electric vehicles play the important role in 
the future energy system. EVs have the advantages of 
environmental and high energy conversion efficiency. 
Governments, auto companies and researchers have 
taken great efforts to promote the development of EVs. 
Electric vehicles may gradually replace traditional fuel 
vehicles. The increasing charging demand of moving EVs 
significantly accelerates the integration of transportation 
systems and power systems [2]. Moreover, EVs are low-
carbon travel as well as consumption part of intermittent 
renewable energy. 

Due to the introduced spatial-temporal uncertainty 
and flexibility of the increasing EV charging load, 
distribution network operation will be greatly impacted 
by the large-scale EV charging power [3]. The normal 
operation of the power system will be fundamentally 
affected by a new load peak, consisting of uncontrolled 
EV charging load and the original load peak. Especially, 
the reliability could be reduced [4]. Therefore, the 
research of reliability assessment for distribution 
network within EVs is necessary. 

At present, the research on the impact of charging 
load on distribution network reliability mainly focuses on 
such factors including charging mode, permeability and 
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plug-in location. And the charging load model used in this 
study is relatively simple [5-7]. In [5], the reliability 
influence of plug-in EV is analyzed from three aspects, 
including load control type, plug-in location and 
permeability. EV user behavior and power system 
dispatching rules are considered in [6], and the impact of 
plug-in EV grid-connected capacity on power supply 
reliability is assessment. In [7], according to Monte Carlo 
method, the sequential operation data of components is 
obtained, and the influence of PHEV on the reliability of 
distribution network is discussed. In [8], the information 
security risk of user side is taken into account, and 
analyses the reliability of distribution network according 
to different attack types. In fact, in addition to the above 
effects, the future impact of distributed generation (DG) 
in urban distribution network cannot be ignored [9]. 

The precise spatial-temporal distribution results of 
charging load can improve the accuracy of reliability 
assessment. Electric vehicle is closely related to the 
traffic system and distribution network. Therefore, the 
research on charging load modeling of EV needs to 
consider the coupling system [10]. The trip chain takes 
the randomness of spatial-temporal charging load into 
consideration and the date of national household travel 
survey can be utilized [11]. Therefore, on the basis of trip 
chain and traffic system model, this paper forecasts the 
spatial-temporal charging load. Based on the relatively 
accurate forecast results, the analyses the reliability 

considering the future DGs and EVs development mode.  
The rest of this paper consists of four main sections. 

Section 2 introduces an EV charging load forecasting 
approach. In Section 3, the improved sequential Monte 
Carlo method is discussed to assess reliability. An 
integrated traffic system and distribution network in 
Section 4 to verify the availability of the proposed 
method. Section 5 is the conclusion of this paper. 

2. EV CHARGING LOAD FORECASTING 

2.1 The trip chain 
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Fig 1 Diagram of the trip chain 
The travel demand of EV in urban traffic network can 

be represented by the trip chain shown in Figure 1. The 
main destinations of EV are home(H), workplace(W), 
leisure-related location(L). 

The established process of a simple or complex trip 
chain is as followed: i) According to the survey data, the 

travel location is classified, and the lognormal probability 
function is utilized to obtain the first time travel time and 
last time departure time. ii) The daily destinations with 
home as the starting point are generated by Monte Carlo 
sampling method. 

2.2 Transportation system modeling 

Graph theory [12] is used to establish traffic network 
model. According to the topology of traffic system, 
vertex sets V and road set E can be obtained by the 
intersection points of multiple road sections and the 
number of roads. The shortest path between the vertices 
is obtained by road weight matrix D and the shortest 
path algorithm. 

In this paper, considering the traffic network 
constraints, trip chain and MC method is used to 
simulate the travel. Assuming that the driver does not 
detour the original path, he chooses the shortest path. 
The driving path can be obtained by the Dijkstra shortest 
path method. 

2.3 Charging demand modeling 

The charging duration time can be obtained by 
formula (1).It is took unnecessary time for charging in 
midway. Therefore, users will only choose midway 
charging under the condition of formula (2). The location 
and duration of charging in midway are determined by 
formula (3-5). 
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where, Ti 

ch is the charging duration time for destination 
of the i-th trip; w is the power consumption per unit 
mileage; C is the capacity; X

SOCt 

d  is the distance 

corresponding to the initial SOC; kd is the distance 

of the N section in a trip; {1,2,…,N} is the set satisfying 
inequality (2); max represents get the maximum of the 
set; Ri(sn) represents the node number sn of the route R 

in trip i ; 
( )P  is the charging power, kw ; Pq is the fast 

charging power. 
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3. RELIABILITY ASSESSMENT 
In composite reliability evaluation studies, repetitive 

solutions of an optimization problem with an objective 
function of minimum load curtailment are performed. 
The sequential Monte Carlo simulation method is used 
to sample the "operation-failure-operation" process of 
the system components according to the failure rate and 
repair rate of the components. Assuming that the 
duration of components in each state obeys an 
exponential distribution, the random state of the system 
is obtained by combining the operation states of 
components, and the system reliability index is 
calculated based on the optimal load curtailment model. 
In the simulation, 10 years is chosen as a Monte Carlo 
simulation period, and the system load curtailment is 
solved by the MATPOWER optimal power flow. 

The relevant steps of the reliability assessment 
based on the sequential Monte Carlo are as follows: 

1) Set up the initial state of the system and input the 
original data, including grid structure, conventional load, 
charging load, power generation, etc. 

2) According to the failure rate and repair rate of 
components, the time series state of components is 
extracted and the component state matrix is generated. 

3) Combined with the component state matrix, when 
the system is in fault state or satisfies formula (6), the 
optimal power flow is calculated and the load 
curtailment is obtained, i.e. EENS. 

( ) ( ) ( )SG DG LP t P t P t+ 

            

 (6) 

Where, PSG (t) is the active power provided by the system 
generator supply at time t; PDG (t) is the power of DG at 
time t; PL (t) is the sum of load and loss at time t, and the 
loss can be set 5% of load. 

4) The simulation terminates when the maximum 
number of simulations is N2 or the convergence 
condition of equation (7) is satisfied. 
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In the formula,  is the coefficient of variance, 

Var( )n is the function of variance, n  is the estimated 

value of reliability index (e.g. EENS) after n-th simulation, 
and ε is the convergence accuracy. 

4. CASE STUDY 
The 33-bus distribution network [1] is used for case 

study. The charging behavior can be simulated on the 
transportation network based on models in Section 2. 
Then the charging demand of each node in the regional 
distribution network on typical working days and rest 
days could be given and shown in Fig 2. 

 
(a)workday                   (b) holiday 

Fig 2 Spatial-temporal distribution of daily charging load 

 
The ratio of peak charging load to peak basic load is 

taken as the EV penetration PEV. When the generation is 
enough, the system reliability evaluation results are 

shown in Table Ⅰ. From the table, it can be seen that 

large-scale EV connected to distribution network for 
disorderly charging reduces the reliability, and the higher 
the PEV, the greater the impact on the reliability of 

distribution network. Table Ⅱ gives the results of node 

load loss under different PEV. The results show that bus 
7, 8, 9, 18, 26 and 27 have higher loss, which is 
determined by the distribution network topology. 
Adding standby power supply near these buses can 
improve node reliability, which provides data basis for 
distribution network planning. 

Tab. Ⅰ Reliability assessment results 
PEV Reliability results 

LOLP SAIFI SAIDI EENS 

0 0.00141153 11.4986 4.5103 44.5302 
20% 0.00141201 11.6148 4.5532 48.3733 
38% 0.00140354 11.7960 4.6057 52.1021 
50% 0.00145738 11.8218 4.7376 58.4960 

Tab. Ⅱ Comparison of node energy not supplied results 
bu

s 

PEV bu

s 

PEV bu

s 

PEV 

20% 38% 20% 38% 20% 38% 

1 0 0 12 1.948 2.490 23 0.464 0.576 

2 0.514 0.597 13 1.728 2.315 24 1.217 1.223 

3 0.455 0.497 14 1.356 2.062 25 1.190 1.267 

4 0.955 1.167 15 1.082 1.790 26 3.583 3.945 

5 1.828 2.003 16 0.822 1.283 27 3.622 4.046 

6 2.476 2.619 17 2.059 3.081 28 1.271 1.546 

7 4.189 4.624 18 3.215 3.897 29 1.216 1.413 

8 4.126 4.528 19 0.513 0.598 30 1.667 2.072 

9 4.138 4.560 20 1.458 1.603 31 1.631 1.825 

10 2.798 3.369 21 1.157 1.350 32 1.633 1.821 

11 2.078 2.661 22 0.791 0.876 33 1.620 1.819 

The relationship between different travel chain 
combinations and reliability indicators is shown in Fig 3. 
RC is the ratio of simple chain to complex chain. From the 
graph, EENS increases with the increase of the ratio of 
complex chain. Based on the development of DG, the 
influence of charging load on distribution network is 
analyzed, which may lead to system load loss due to 
insufficient DG output. Fig 4 shows EENS in two DG 
scenarios with EV integration. 
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Scenario 1: Generation limitation is 23 MW, DG 
installed capacity changed from 2 MW to 10 MW, and PDG 
gradually increased. 

Scenario 2: The total capacity is maintained at 
23MW. DG gradually replaces the superior power supply. 
The installed capacity of DG gradually increases from 
2MW to 10MW. 
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Fig 3 Reliability index of different trip chain ratio 
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Fig 4 EENS results with different DG capacity settings 

 

The system loss of scenario 2 is significantly higher 
than scenario 1, and system reliability decreases. This is 
due to the intermittent output of DG, which cannot meet 
the new load peak formed after EV access, resulting in 
system load loss. 

5. CONCLUSION 
This paper proposed a reliability assessment method 

considering the stochastic EV charging load. The validity 
of the method is verified by an example of a coupled 
traffic network and a distribution network. The results 
show that electric vehicle penetration, trip chain ratio 
and different DG scenarios have significant impact on 
distribution network reliability. In the follow-up study, 
the relationship between parameters and reliability can 
be further explored. 
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