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ABSTRACT 
As the power sector decarbonizes, transport 

becomes the main driver of CO2 emissions growth. 

However, sustainable road transportation is nowadays 

achievable throughout the electrification of propulsion 

systems as it represents a promissory to achieve the 

climate goals. In this paper, a library developed using the 

object-oriented mathematical modelling language 

Modelica was used to simulate the impact of different 

driving behaviors, more specifically top-speed and 

acceleration rate, on the operational range of an electric 

vehicle. Results found differences over 50% on the 

operational range of the vehicle with different 

acceleration rates and cruise speeds selected. 

Furthermore, this paper analyzed the impact of external 

environmental conditions on the battery range. It was 

found that sub-zero temperatures could reduce driving 

range by over 17%. These results offer great insights for 

successful implementations of eco-driving modes on 

electric vehicles, as well as designing efficient driving 

strategies for autonomous cars.  

 

Keywords: Electric Vehicles, Mathematical Modelling, 

Modelica, Range Anxiety, Driving behavior  

1. INTRODUCTION 
 
Sustainable road transportation is nowadays 

achievable throughout the electrification of propulsion 

systems as it represents a promissory way to fulfill the 

traced goals by the United Nations in the Paris 

Agreement. Battery-electric vehicles (BEV) offer multiple  

advantages over their conventional counterparts, for 

instance, when charged using renewable energy, their 

greenhouse gases (GHG) footprint reduces significantly. 

Furthermore, regenerative braking, state-of-the-art 

motors and power conversion technologies increase 

their operation efficiency, and finally, consumer reports 

have reported an overall better experience [1]. In 

consequence, several strategies, including short and long 

term policies have been implemented to increase the 

market uptake of BEVs [2]. 

This has led to an increase in BEV sales: 

approximately 750 thousand vehicles new vehicles were 

sold in 2016, which accounts for 2 million vehicles on the 

roads, almost twice the amount of 2015 [3]. 

BEVs, however, face several challenges. First of all, 

their price is higher compared with hybrid electric 

vehicles (HEV) and ICE cars. Secondly, the battery pack 

accounts for a great share of the overall cost [4][5]. 

Furthermore, their operational range operation might 

cause users experience the fear that the vehicle will not 

reach its destination or charging station because of the 

battery will run out of power, a common phenomenon 

found on first-time EV owners, known as range anxiety 

[6]. 

Although the market uptake of BEVs is growing up, 

highly detailed operational profiles datasets for EVs are 

often proprietary and the majority of public information 

available is obtained from limited demonstration 

projects and statistically-build datasets, fixed to specific 

operation conditions [7]. Therefore, to analyze the 

impact of the overall range for different driving patterns, 

mathematical models, able to calculate the kinematics of 

the vehicle, are required [8].  

Several authors have addressed the issue of energy 

efficiency in electric vehicles, however, the authors could 

not find specific analysis for energy consumption 
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depending only on acceleration and top-speed 

parameters, for instance: Grunditz and Thiringer focus 

on motor losses and the consequences of varying motor 

parameters on the acceleration time [10]; Ahmadi et al 

[11], use several energy management strategies for 

improving fuel economy and performance of FC-hybrid 

vehicles and Martinez et al [12], studied the performance 

of an electric vehicle over a quarter mile to determine 

the best storage technology required. 

  The purpose of this study is to assess the BEVs' 

operational range under several driving patterns and 

environmental conditions. A previously developed 

library for modeling EVs, presented in [13] was used, 

where a Chevrolet Bolt was modelled. This paper is 

structured as follows: The next section describes the 

electric vehicle modelling strategy and the design of 

different driving patterns. Section 3 presents and 

analyzes the results obtained from using the defined 

driving patterns on the BEV model. Finally, Section 4 

summarizes the main results of this work. 

 
Fig. 1.  A visual representation of the developed library  

2. METHODOLOGY 
 

The driving patterns were coded in MatLab (2015b, 

MathWorks) in three groups: constant cruise speed, 

constant acceleration and a combination of both. First, 

multiple simulations were carried out using these driving 

profiles and the operational EVs range was obtained 

from the simulation model. Secondly, in order to analyze 

the impact of different environmental conditions, a 

Monte Carlo simulation was carried out changing the 

external variables of temperature and wind speed. All 

the simulations were performed using OpenModelica 

1.13. 

2.1 Electric vehicle modelling 

A library to estimate the operational range of two 

commercial EVs, using the Modelica Language was used. 

Detailed information about the mathematical modelling, 

vehicle's parameters and model limitations are 

presented in [13]. Models were validated using the New 

European Driving Cycle (NEDC) and the range was 

compared with manufacturer’s data. In this particular 

study, all the tests were carried out on the Chevy Bolt 

model. A visual representation of the model, inputs and 

outputs are presented in Fig. 1. 

2.2 Driving patterns definition 

People’s driving patterns varies with several factors, for 

instance: traffic conditions, road quality, anxiety, among 

others. Therefore, the task of modeling a standard 

driving pattern is not straightforward. Driving behaviors 

can be defined from the acceleration and braking periods 

[14]. Thus, aggressive patterns could be modeled from 

abrupt acceleration and braking events. 

2.2.1 Constant velocity profiles 

Aerodynamic losses in any vehicle increases with the 

cube of the velocity and in consequence, accounts for a 

large share of the required force to power the vehicle 

when driving [15]. Then, several scenarios were defined 

for different cruise speeds from the lowest to the top 

speed, 147 Km per hour. 

 

 
Fig. 2. Constant acceleration driving profiles 

2.2.2 Constant acceleration profiles 

Abrupt acceleration and braking events require the 

battery pack and power converter to deliver an amount 

of current that depends directly on the acceleration [16].  

Furthermore, in Lithium-based battery technology, 

current outputs above the rated 1-C current, lead to 

sharp changes on its internal resistance value, thus 

reducing its operational energy capacity [17]. To test this 

out, three constant acceleration profiles were designed 

and are presented in Fig. 2. These patterns were repeated 

until the battery pack reached 20% charge level (SOC). 

 

2.2.3 Quarter mile 
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The energy performance was measured in kWh/km using 

a standard quarter mile setup, often used in drag-racing, 

where the vehicle was simulated using different 

constant-acceleration slope as presented in Fig. 3. For 

each one, the impact on energy performance was 

recorded.  

 

 
Fig. 3. Driving slopes for quart mile tests 

2.3 Environmental Conditions testing using Monte Carlo 
Simulations 

A simulation scenario was designed to test the arrival 

probability of the modelled BEV in a quarter mile using a 

constant acceleration ramp. Since the model assumed a 

discharged battery when the charge level falls below 

20%, we established an initial SOC of 21% to reduce 

simulation time. A linear relationship between the 

battery's capacity and temperature was considered, as 

proposed by [18]. To model the environmental variables 

of temperature and wind speed a Monte Carlo method 

was used. Fifty (50) Monte Carlo simulations were 

carried out for the selected BEV model, in two extreme 

scenarios at different temperatures and wind speeds. 

The parameters of the probability distributions used are 

presented in Table 1. 

Table 1. Uncertainty Models Used 

Environmental 
Input 

Probability 
Distribution  

Parameters 

Wind Speed Weibull λ = 6,   k = 10 

Temperature Normal 
)*+ (µ = 30,   σ = 5) 
2*34 (5 = −20,   8 = 5) 

3. RESULTS 
 
On this section, results from the scenarios defined in 

Section 3 for the used model are presented. The impact 

on the operational range of the simulated BEV for the 

driving profiles for different cruise speeds and constant 

acceleration rates are summarized on Fig. 4. The main 

reason why the operational range decreases at lower 

speeds is due to the fact that the electric motor efficiency 

decreases at low speeds [19]. It was found that the range 

is the highest when the driver holds a cruise speed of 

approximately 50 km/h.  

 

 
Fig. 4. Driving range for acceleration ramps and cruise speeds 

Analyzing the acceleration factor, results provided by the 

tests conducted in a quarter mile demonstrated that 

there is a considerable increase in the energy 

consumption between slope 1 and the rest. The energy 

consumption per 400 m were, from Slope 1 to Slope 4, 

respectively: 0.4018, 0.3321, 0.2696, and 0.2026 

respectively for each slope.  

 

 
Fig. 5. Cumulative arrival probability on each MC trial 

Finally, the impact of the wind speed and outdoor 

temperature on the operational range of the BEV is 

presented in Fig. 5. This plot shows the cumulative sum 

of the arrival probability to the desired destination on 

each MC trial. This experiment shows that during 

extreme warm conditions the probability of arrival was 

not shaped. On the contrary, the arrival probability was  

shaped by extreme cold temperatures, since only on a 

10% of the total number of simulations, the EV 

successfully arrived. Additionally, range reductions in of 

up to 17% at -20 °C and 9.4 m/s were obtained.  

4. CONCLUSIONS 
 

This work has presented the capabilities of an object-

oriented open-source model developed using the 

modelling language Modelica, for evaluating the impact 

of different driving patterns and environmental variables 

on the operational range of EVs as well as introducing 
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uncertainty in mathematical models by using Monte 

Carlo simulations. Results suggested that substantial 

energy savings can be achieved on BEVs by shaping the 

way the driver accelerates as well as the cruise speed 

used. Additionally, regarding environmental conditions, 

extreme low-temperature values considerably reduce 

the available range while wind speed and high 

temperatures values do not affect it as much. These 

results offer great insights for successful 

implementations of eco-driving modes on electric 

vehicles, as well as designing efficient driving strategies 

for autonomous cars.  
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