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ABSTRACT 
 In this study we investigate the impact of 

Geopolitical Risk (GPR), US Economic Policy Uncertainty 
(EPU), St. Louis Fed Financial Stress Index (STLFSI), and 
market volatility (VIX) on the prices of US and Brazilian 
ethanol and Malaysian palm oil. By applying quantile 
autoregressive and quantile causality methods we can 
illustrate the dynamic relation between uncertainty and 
biofuel prices. Our results show that all measures of 
uncertainty influence ethanol and palm oil prices in both 
the lower and upper tails of the distribution. 
Furthermore, uncertainty seems to impact both U.S. and 
Brazilian ethanol prices price in a similar fashion, even if 
there are clear differences in the impact pattern. In the 
case of U.S. ethanol price, the results imply a slightly 
symmetrical impact pattern, with weak indications that 
uncertainty is triggering changes in price returns in the 
lower, towards the extreme, tails of the distribution. 
There are also clear indications that uncertainty impacts 
ethanol returns in the upper tails of the distribution, with 
a slight shift towards the middle quantiles. The results 
suggest that U.S. ethanol prices are more affected by 
uncertainty when the market conditions are positive 
rather than negative. In the case of Brazilian ethanol 
prices, the analysis also displays a symmetrical 
uncertainty impact pattern in both the lower and the 
upper tails of the distribution. However, unlike the other 
biofuel prices, there are indications that uncertainty also 
affects prices in the middle quantiles. Uncertainty has a 
stronger impact on Malaysian palm oil prices both near 
the middle quantiles as well as in the upper and extreme 
tails of the distribution. These results may indicate a 
sensitivity to uncertainty near normal market conditions 
and to large and extreme positive returns. Our results 
provide valuable insights into the price dynamics of 
biofuels. This knowledge is important for the transition 

to a sustainable energy system, especially in sectors not 
easily electrified such as aviation, shipping and certain 
types of industrial processes. Furthermore, our results 
also have implications for the financial sector and for risk 
management strategies. 

Keywords: Biofuels; Uncertainty; Quantile Causality; 
Geopolitical Risk; Economic Policy Uncertainty. 

NONMENCLATURE 

Abbreviations 

US-EP U.S. Ethanol Price 
BR-EP Brazilian Ethanol Price 
MA-PP Malaysian Palm Oil price  
VIX S&P500 Implied volatility Index 
EPU Economic Policy Uncertainty Index 
GPR Geopolitical Risk Index 
STLFSI St. Louis Fed Financial Stress Index 

1. INTRODUCTION
Currently, total primary energy demand is said to

comprise about 80 % percent fossil fuels [1]. And in the 
process of depleting the fossil fuel sources, humans are 
continually contributing to increasing greenhouse gas 
emissions. Among the alternatives, biofuels are amongst 
the most environmental friendly sources [2], but despite 
the major growth in biofuels in recent years, shown in 
figure 1 and 2, additional capacity is needed. To reach the 
goal of a sustainable energy system, biofuels will play an 
increasingly important role as substitutes for fossil fuels, 
cubing carbon emission in sectors that are hard to 
electrify, such as aviation, shipping and to various 
industrial processes [3, 4].  



 2 Copyright © 2019 ICAE 

For example, in the aviation industry, fuel is one of 
the major operating costs and almost 10 % of the crude 
oil is used to produce aviation jet fuel [5]. Thus, operation 
costs linked to fuel expenditure in the aviation industry 
is highly susceptible to crude oil prices and price 
volatility. Theoretically, sustainable aviation fuels could 
substitute 100% of conventional air fuel, requiring 
substantial investments in new biorefineries [6].  

To reach the sustainable development scenario in 
the World Energy Outlook 2018 report [4], biofuel 
consumption will have to increase from 1.8 million 
barrels of oil equivalence per day (mboe/d) in 2017, 
corresponding to a 3 % share of total transport demand, 
to 7.3 mboe/d in 2040 which corresponds to a projected 
15 % share of total transport demand.  

In order to support the rising demand of biofuels, 
there is a need for substantial investments. In 2017 
global average investments in transport biofuel 
amounted to $2 billion, while the projected investments 
in the sustainable development scenario, amounts to 
$25 - $47 billion annually between 2018 to 2040 [4], this 
make biofuel capacity investment an increasing 
important issue for portfolio investors, sector investors 
[6-9] and policy makers [10, 11]. The financial aspect also 
concerns the increasing volatility in energy prices [12], a 
volatility likely to be boosted by the fluctuating attributes 
of renewable energy generation, i.e. intermittent 
periods of sun and wind, that leads to variable and 
intermittent power generation.  

Among the biofuel producing countries, the U.S. has 
emerged as the leading producer of biofuels [13] and in 
2016, the U.S. alone extracted 15,379 million gallons of 
ethanol [14]. Brazil, another major producer of biofuels, 
has already replaced 42 percent of its gasoline needs 
with sugarcane ethanol, making gasoline the alternative 
fuel in Brazil [15].Towards the end of 2017, Indonesia 
and Malaysia largely dominated the palm oil industry, 
accounting for 54% and 32% of global palm oil 
production, respectively [16]. 

In the biofuel price area, there have been some 
studies addressing price uncertainty, but mostly they 
address the production processes and employ simulation 
tools [17-20]. Furthermore, studies often focus on: crop 
and feedstock issues [2, 14, 21-23]; the energy-food 
nexus [24-30]. 

Regarding economic effects originating from energy, 
there is ample research on how changes in oil and fuel 
prices affect economic activities, (symmetrically as well 
as asymmetrically), in both global and national 
circumstances [7, 31-33]. For example, it’s has previously 
been shown that there exists a link between changes in 
fuel price and changes in airline stock returns and the 
evidence found supports the idea of market inertia [34]. 

However, It has also been shown that biofuel 
production also can aid in limiting the adverse economic 
impacts originating from crude oil market volatility [14, 
35]. 

In the research regarding uncertainty and biofuels, 
there are findings that indicate that price variability can 
negatively impact profitability and potentially hinder 
investments and development of biofuel technology 
[36]. 

Other types of research, related to biofuels and 
uncertainties, involve climate uncertainties in energy 
system transition [37]. Another study, examining key 
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sources of uncertainty in biofuel production, finds that a 
blending of primary and secondary feedstock may limit 
feedstock price uncertainty [38]. Additionally, some 
studies have focused on economic feasibility, comparing 
decarbonized conventional fossil fuels prices with 
biodiesel prices [39].  

While previous biofuel studies have mainly focused 
on feedstock, production costs, little or no attention has 
been paid on what effect economic policy uncertainty, 
geopolitical risk and financial stress have on the price of 
biofuel commodities in different market conditions. Our 
study fills this gap in the relevant literature, by providing 
a detailed view of the dynamic relationship between 
uncertainty and biofuel commodity prices in different 
market conditions. 

In our analysis, we focus on the effects on biofuel 
commodity prices, originating from uncertainty. And by 
including a set of uncertainty indices we can capture the 
effect differences or similarities between different types 
of uncertainties. To our knowledge, no other study has 
presented a model capable of capturing the uncertainty 
dynamics in a clear and comprehensive fashion.  

According to our model, uncertainty causes large 
negative price changes in the biofuel commodities 
considered, while moderate uncertainty changes only 
moderately impact prices. And finally, uncertainty also 
causes large or extreme positive changes in the prices of 
ethanol and palm oil. 

The implications of the results suggest that variables 
of political and global character such EPU, GPR and 
STLFSI should also be taken into consideration in the 
transition to a sustainable energy system. Uncertainty 
measures enable ethanol and palm oil actors (on the 
supply and demand side), corn and palm growers, and 
policy makers the possibility to monitor the price 
dynamics of biofuels in a straightforward manner when 
deciding production output and developing appropriate 
policy guidelines related to subsidizing and energy sector 

investment. From a financial perspective, our model 
gives portfolio investors the opportunity for improved 
risk management and a way to effectively rebalance 
portfolios. 

2. DATA AND DESCRIPTIVE STATISTICS   

2.1 Uncertainty measures and biofuel prices 

This paper analyses the causal relationship between 
uncertainty measures and ethanol and palm oil returns. 
The uncertainty indicators used in the study are the 
CBOE Market Volatility Index (VIX), Global Economic 
Policy Uncertainty Index (EPU), Geopolitical Risk Index 
(GPR) and the St. Louis Fed Financial Stress Index 
(STLFSI).  

The ethanol and biofuel series considered are the 
U.S. ethanol prices (U.S.-EP), the Brazilian ethanol prices 
(BR-EP) and the Malaysian Palm Oil prices (MA-PP).  

U.S.-EP and MA-PP series consist of 139 monthly 
observations and have been collected from DataStream 

International. The data on Brazilian hydrous ethanol 
prices (BR-EP) are retrieved from the Centre for 
Advanced Studies on Applied Economics. 

The selected VIX index is based on the implied 
volatilities of the S&P500 options index and accounts for 
market expectations of a 30-day time horizon, with no 
seasonal adjustment [40]. 

The global economic policy uncertainty index is a 
GDP-weighted average of national EPU indices for 20 
countries. Each of the national indices reflects the 
relative frequency of domestic newspaper articles that 
include three terms related to economic (E), policy (P) 
and uncertainty (U). Each monthly national index 
represents a proportional share of the own-country 
newspaper articles in the native language [41, 42]. 

The GPR index is based on counting of the number of 
times words related to geopolitical tensions appear in 
international newspapers. This index would therefore be 

Table 1 Descriptive statistics 
 US-EP BR-EP MA-PP VIX EPU GPR STLFSI 

Mean 2.13 0.73 0.55 -0.62 812.41 6.67 19.50 2.89 126.43 4.77 87.42 4.39 -0.44 

Median 2.13 0.76 0.56 -0.58 797.50 6.68 16.91 2.83 121.42 4.80 73.50 4.30 -0.79 

Maximum 5.00 1.61 0.87 -0.14 1277.50 7.15 62.64 4.14 283.36 5.65 246.24 5.51 4.62 

Minimum 1.36 0.31 0.31 -1.17 430.00 6.06 10.13 2.32 50.07 3.91 41.01 3.71 -1.57 

Std. Dev. 0.54 0.24 0.13 0.24 197.16 0.24 9.25 0.38 46.93 0.37 39.59 0.40 1.17 

Skewness 1.43 0.44 0.20 -0.29 0.42 -0.09 2.29 0.96 0.95 -0.14 1.55 0.57 2.07 

Kurtosis 7.80 3.10 2.54 2.41 2.51 2.48 9.47 3.88 4.21 2.93 5.60 2.79 7.68 

Jarque-Bera 180.51*** 4.61* 2.12 3.94 5.41* 1.77 364.16*** 25.99*** 29.63*** 0.47 94.46*** 7.68*** 225.79*** 

Observations 139 139 139 139.00 139 139 139 139 139 139 139 139 139 

Note: The first column of each variable is in level and the second column is in log level. The null hypothesis of the Jarque-Bera test is a joint hypothesis of the 
skewness being zero and the excess kurtosis being zero. The notations *. ** and *** indicate rejections of the null-hypothesis at 10%. 5% and 1% significance level.  
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expected to increase in value during times of regional 
and global political tension [43]. 

The St. Louis Fed Financial Stress Index measures the 
degree of financial stress in markets and consists of 18 
weekly data series constructed by principal component 
analysis. The indices included are: seven interest rate 
series, six yield spreads and five other financial series 
[44]. The index is designed to measure developments as 
they occur and when tested, the index accurately 

captures key events amongst other the Russian debt 
moratorium in August 1998 and the financial crisis in 
2008 and subsequent turmoil and financial stress [45].    

2.2 Descriptive statistics and tests 

Table 1 displays the time series descriptive statistics 
in log level, except for STLFSI which is in level due to 
negative values in the original form. The Jarque-Bera test 
shows that the VIX, GPR and STLFSI are not normally 
distributed at the 1 % and 5% significance level. Worth 
noticing is that all the uncertainty measures exhibit a 

clear pattern of non-normality according to the Jarque-
Bera test, while the only biofuel series expressing non-
normality is the U.S. ethanol prices. This is a strong first 
indication of non-normality in our data, making linear 
models suboptimal for the analysis. In order to further 
test for non-linearity in all of the variables, we performed 
a test for independence based on correlation, the so 
called BDS test [46] and the test results are presented in 
table 2. The BDS test seeks for evidence of non-linear 

aspects in our model i.e. independent and identically 
distributed variables (iid).  

The test procedure includes an initial detrending of 
the series and we use three different methods, first-
difference detrending, AR(1) and GARCH (0,1). The 
results show a strong indication of non-normality at the 
1 % level of significance for the US-EP and STLFSI time 
series. There is also a strong indication at the 5 % 
significance level that the MA-PP and GPR series have 
non-normality characteristics. The results indicate non-
normality in all series except Brazilian ethanol prices (BR-
EP) and economic policy uncertainty (EPU) even though 
there are indications of non-normality at the 10 % level 
of significance. From the performed tests, the results not 
only justify the use of non-linear methods as much as it 
requires it. Thus, nonlinear analysis is crucial for 
investigating the relationship between biofuel and 
uncertainty indicators. 

Table 2 BDS independence test 
  First-difference detrending AR(1) GARCH (0,1) 
 m ε = .5 ε = .7 ε = .9 ε = .5 ε = .7 ε = .9 ε = .5 ε = .7 ε = .9 

US-EP 

2 0.01191 0.026624*** 0.018964*** 0.013947* 0.026775*** 0.018465*** 0.01191 0.026624*** 0.018964*** 

3 0.017838* 0.052331*** 0.050734*** 0.018546* 0.052525*** 0.050443*** 0.017838* 0.052331*** 0.050734*** 

4 0.015356* 0.065012*** 0.080285*** 0.015852* 0.065734*** 0.079555*** 0.015356* 0.065012*** 0.080285*** 

BR-EP 

2 0.012988 0.007795 -0.001414 0.009767 0.00193 -0.003669 0.012988 0.007795 -0.001414 

3 0.019083* 0.01504 -0.002886 0.015845 0.001213 -0.00648 0.019083* 0.01504 -0.002886 

4 0.018641* 0.020316 -0.006239 0.015277* 0.005699 -0.011103 0.018641* 0.020316 -0.006239 

MA-PP 

2 0.013831* 0.017320* 0.006979 0.018341** 0.018238** 0.001765 0.013831* 0.017320** 0.006979 

3 0.014908* 0.029911** 0.018732* 0.019077** 0.032711** 0.008153 0.014908* 0.029911** 0.018732* 

4 0.014089* 0.034855** 0.027682* 0.013531* 0.037298** 0.014068 0.014089* 0.034855** 0.027682* 

VIX 

2 0.011162 0.008183 0.002256 0.012020* 0.009016 0.002409 0.011162 0.008183 0.002256 

3 0.019907** 0.018622 0.005877 0.020724** 0.019815 0.00635 0.019907** 0.018622 0.005877 

4 0.024186*** 0.030337* 0.007014 0.024355*** 0.030908* 0.008098 0.024186*** 0.030337* 0.007014 

EPU 

2 0.011055* 0.005478 -0.002554 0.009017 0.005522 -0.002442 0.011055* 0.005478 -0.002554 

3 0.010768 0.013703 0.00175 0.008407 0.013075 0.002319 0.010768 0.013703 0.00175 

4 0.009721 0.019524 0.010013 0.005542 0.017356 0.010752 0.009721 0.019524 0.010013 

GPR 

2 0.008477 0.014882* 0.004167 0.011808** 0.013163* 0.00568 0.008477 0.014882** 0.004167 

3 0.013154* 0.027452** 0.013503 0.014568** 0.023346** 0.012774 0.013154* 0.027452** 0.013503 

4 0.011485* 0.032259** 0.023384* 0.012147* 0.027532** 0.020205* 0.011485* 0.032259** 0.023384* 

STLFSI 
2 0.058822*** 0.062066*** 0.018915** 0.046573*** 0.047961*** 0.024216*** 0.058822*** 0.062066*** 0.018915** 
3 0.093407*** 0.138751** 0.040639*** 0.077613*** 0.120123*** 0.058842*** 0.093407*** 0.138751*** 0.040639*** 
4 0.092118*** 0.187167*** 0.073702*** 0.076716*** 0.167638*** 0.096932*** 0.092118*** 0.187167*** 0.073702*** 

Notes: All series are in log except STLFSI which is first-difference only. The term ε is the distance for testing proximity of the data points and is calculated as a 
fraction of pairs with three values 0.5, 0.7 and  0.9. The term m is the number of consecutive data points to include in the set. The P-values are bootstrapped 
with 5000 iterations. The notations *, ** and *** indicate rejections of the null-hypothesis at 10%, 5% and 1% significance levels.  
 

 

Table 3 Correlation matrix 
  US-EP BR-EP MA-PP VIX EPU GPR STLFSI 
US-EP 1       

BR-EP 0.369 1      

MA-PP 0.474 0.597 1     

VIX 0.020 -0.152 0.052 1    

EPU -0.302 0.345 0.099 0.156 1   

GPR -0.339 -0.071 -0.393 -0.509 0.059 1  

STLFSI -0.039 -0.458 -0.152 0.823 -0.095 -0.382 1 

Notes: Note: All log level except STLFSI which is in level. 
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Table 3 presents the correlation between the time 
series modelled. It is observed that the biofuels have a 
positive correlation amongst each other, and that the 
US-EP has a negative correlation with all variables except 
VIX. The BR-EP also has a negative correlation with all 
variables except the EPU. The MA-PP has a negative 
correlation with GPR and STLFSI.  

In Table 4 we show the results from two unit root 
stationarity tests fitted to verify the integration order of 
the series modelled. It can be observed that the U.S.-EP, 
BR-EP, MA-PP, VIX and STLFSI series are integrated of 
order I(1), while the EPU and GPR are integrated for 
order I(0). For the analysis, all series will be differentiated 
in order for the quantile autoregression tests to be valid. 

 
Figure 3 illustrates the graphs of level and log level 

for the biofuel and uncertainty time series. Several 
brakes characterize the biofuel series with notable 
negative large shifts around the financial crisis in 2008 
and around 2014. These are time periods in which crude 
oil prices underwent sharp trends of decline. Among the 
uncertainty indicators, VIX, EPU and STLFSI have the 

most distinctive shifts in increasing uncertainty levels 
around the financial crisis of 2008.  

The Figure 4 indicates the first difference of the time 
series corresponding to the uncertainty indicators VIX, 
EPU and GPR. It can be seen that the Brazilian ethanol 
prices are the most volatile between the 2006-2010 
period.  

The US ethanol prices are impacted the least during 
the 2008  global financial crisis, while the Malaysian 
palm oil prices are the most strongly affected. The largest 

Table 4 Unit root stationarity test 
  ADF (φ) Lags ADF(ψ) Lags PP level (φ) BW PP (ψ) BW 
LUS-EP -2.36 4 -6.92*** 3 -4.74*** 7 -12.82*** 0 
LBR-EP -2.97 1 -9.18*** 1 -2.79 2 -10.56*** 4 
LMA-PP -2.96 1 -5.90*** 5 -3.10 5 -9.14*** 4 

LVIX -3.28* 1 -9.84*** 1 -3.08 2 -12.05*** 9 
LEPU -4.34*** 0 -9.59*** 2 -4.22*** 2 -16.73*** 17 
LGPR -6.00*** 0 -9.36*** 3 -5.82*** 2 -52.74*** 136 
STLFSI † -2.63 1 -9.82*** 0 -2.51 4 -9.83*** 1 

Notes: Methods used in this test is Augmented Dickey-Fuller  test (ADF) 
and the Philips-Perron test (PP). φ indicates test with intercept and trend 
in level. Ψ test with intercept and trend in first difference. †Only first 
difference. The notations *. ** and *** indicate the rejection of the null-
hypothesis at 10%. 5% and 1% significance level. For ADF and PP the null-
hypothesis is unit root process. ADF: Max lag 20 and AIC. PP: Bandwidth: 
(Newey-West automatic) using Bartlett kernel 
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Fig 3 Time series in level.  
Notes: Graphs of biofuels and uncertainty indicators normalized and in level and log level and at a first visual inspection indicate that some of the series are 
stationary in level. 
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and most constant positive returns occur on the US and 
Brazilian returns. the St. Louis Fed Financial Stress Index 
records its highest values throughout 2009, while 
remaining constant and close to zero throughout the 
sample period. The market volatility and economic policy 
uncertainty indices also record some of their highest 
values during the global financial crisis.  

2.3 Autoregressive and quantile causality model 

Given the absence of Independent and identically 
distributed variables (iid) in the examined time series, 
nonlinear models such as quantile autoregression and 
quantile causality are preferable to adequately account 
for the impact of uncertainty on the biofuel commodity 
prices and returns considered [47]. 

 As we will show in our study, uncertainty measures 
represented by VIX, EPU, GPR, STLFSI are nonlinearly 
related with ethanol and palm oil prices. The 
interpretation of the quantile causality test resembles 
that of the ordinary linear causality test and thus 
provides information about the predictive power of an 
independent variable on the dependant variable in a 
given quantile (τ). The test also includes lags of the 
dependent variable to control for autoregressive 
dynamics. A weakness of the quantile Granger-causality 
test lies in its inability to inform about the magnitude of 
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the strength of association. To test for granger causality 
in quantiles we will perform the following tests:1 

𝐻0
△𝑈𝑖↛△𝐵𝑖𝑜𝐹: 𝐸 {1 [△ 𝐵𝑖𝑜𝐹𝑡  ≤ 𝑚 (𝐼𝑡

△𝐵𝑖𝑜𝐹 , 𝜃0(𝜏))] 𝐼𝑡
△𝐵𝑖𝑜𝐹 , 𝐼𝑡

△𝑈𝑖}

=  𝜏 , 𝑎. 𝑠. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝛵 

(1) 

versus: 

𝐻𝐴
△𝑈𝑖↛△𝐵𝑖𝑜𝐹: 𝐸 {1 [△ 𝐵𝑖𝑜𝐹𝑡  ≤ 𝑚 (𝐼𝑡

△𝐵𝑖𝑜𝐹, 𝜃0(𝜏))] 𝐼𝑡
△𝐵𝑖𝑜𝐹 , 𝐼𝑡

△𝑈𝑖}

≠  𝜏 , 𝑎. 𝑠. 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜏 ∈ 𝛵 
(2) 

Where 𝑚 (𝐼𝑡
△Ui, 𝜃0(𝜏))  correctly specifies the true 

conditional 𝑄𝜏
𝑌(⋅ │𝐼𝑡

𝑌), for all 𝜏 ∈ Τ. The null-hypothesis of 
linear Granger causality is tested against the alternative 
hypothesis of nonlinear Granger causality. In accordance 
with the model specification introduced by Troster [48], 
we will apply the following test statistics: 

 𝑆𝑇 ∶= ∫
𝜏
∫

𝑤
|𝑣𝑡(𝝎, 𝜏)|2𝑑𝐹𝜔(𝜔)𝑑𝐹𝜏(𝜏), (3) 

Where 𝐹𝜔(⋅) is the conditional distribution function of a 
d-variate standard normal vector, 𝐹𝜏(⋅) follows a uniform 
discrete distribution over a grid of Τ in n equally spaced 
points, Τ𝑛 =  {𝜏𝑗}

𝑗=1

𝑛 , and the vector of weights of 𝝎 ∈  ℝ𝑑 

is drawn from a standard normal distribution. The test 
statistic in Equation 3 can be estimated using its sample 
analog. Let ψ be a T x n matrix with elements 𝜓𝑖,𝑗 =

                                                           
1 The notation (Ui) represents all uncertainty indicators VIX, EPU, GPR 

and STLFSI and BioF represents all biofuels U.S. ethanol, Brazilian ethanol and 
Malaysian palm oil. 

 Ψ𝜏𝑗(𝑌𝑖 − 𝑚 (𝐼𝑖
𝑌 , 𝜃𝑇(𝜏𝑗)))  and Ψ𝜏𝑗(⋅)  is the function Ψ𝜏𝑗(𝜀)

∶=  1(𝜀 ≤ 0) − 𝜏𝑗. Then the following test statistic is applied: 

 
𝑆𝑇 =  

1

𝑇𝑛
∑|𝜓 ∙ 𝑗𝑾𝜓 ∙ 𝑗́ |

𝑛

𝑗=1

 (4) 

Where W is the T x T matrix with elements 𝒘𝑡,𝑠 =

exp [−0,5(𝐼𝑡 − 𝐼𝑠)2, and 𝜓 ∙ 𝑗 denotes the j-th column of ψ. 
This methodology is adequate to account for 
nonlinearities and extreme quantile observations, an 
aspect that is of our concern in trying to identify those 
uncertainty factors that most strongly influence ethanol 
and palm oil prices as uncertainty increases or decreases. 

3. RESULTS 

3.1 U.S. ethanol 

Table 5 displays the p-values of the Granger-causality 
in quantiles test for U.S. ethanol price returns and the 
uncertainty indices.  

Considering all the quantiles, τ = {0.05 – 0.95}, there 
is causality running from uncertainty measures to the 
U.S. ethanol price returns in 8 out of 12 model 
specifications at the 1 % level of significance.  

Table 5 Quantile causality U.S. ethanol price 
 ∆VIX to ∆US-EP ∆EPU to ∆US-EP ∆GPR to ∆US-EP ∆ STLFSI to ∆US-EP 

τ I∆US-Ep = 1 I∆US-Ep = 2 I∆US-Ep = 3 I∆US-Ep = 1 I∆US-Ep = 2 I∆US-Ep = 3 I∆US-Ep = 1 I∆US-Ep = 2 I∆US-Ep = 3 I∆US-Ep = 1 I∆US-Ep = 2 I∆US-Ep = 3 

0.05 0.88 0.96 0.89 0.84 0.90 0.90 0.68 0.84 0.83 0.63 0.89 0.92 
0.10 0.01*** 0.01*** 0.11 0.01*** 0.01*** 0.07* 0.01*** 0.01*** 0.10* 0.01*** 0.01*** 0.02** 
0.15 0.04** 0.05** 0.01*** 0.04** 0.05** 0.01*** 0.04** 0.05** 0.01*** 0.04** 0.05** 0.01*** 
0.20 0.06* 0.27 0.19 0.04** 0.19 0.16 0.06* 0.26 0.16 0.09* 0.28 0.18 
0.25 0.14 0.55 0.01*** 0.07* 0.55 0.01*** 0.02** 0.47 0.01*** 0.14 0.56 0.01*** 
0.30 0.57 0.05** 0.12 0.57 0.04** 0.12 0.51 0.04** 0.14 0.66 0.08* 0.12 
0.35 0.13 0.35 0.79 0.10* 0.27 0.59 0.15 0.25 0.62 0.18 0.25 0.51 

0.40 0.11 0.68 0.80 0.11 0.68 0.71 0.12 0.52 0.74 0.11 0.36 0.66 
0.45 0.07* 0.03** 0.40 0.08 0.03** 0.32 0.09* 0.03** 0.30 0.03** 0.03** 0.26 
0.50 0.03** 0.14 0.81 0.03** 0.14 0.86 0.10* 0.17 0.83 0.03** 0.14 0.59 
0.55 0.45 0.53 0.74 0.48 0.54 0.75 0.53 0.60 0.80 0.51 0.52 0.51 
0.60 0.67 0.62 0.39 0.70 0.60 0.38 0.79 0.71 0.52 0.76 0.61 0.42 

0.65 0.03** 0.27 0.01*** 0.03** 0.27 0.01*** 0.07* 0.46 0.01*** 0.09* 0.41 0.01*** 
0.70 0.01*** 0.02** 0.01*** 0.01*** 0.01*** 0.01*** 0.04** 0.08* 0.01*** 0.12 0.01*** 0.01*** 
0.75 0.01*** 0.06* 0.01*** 0.01*** 0.04** 0.01*** 0.01*** 0.06* 0.01*** 0.01*** 0.06* 0.01*** 
0.80 0.05** 0.04** 0.01*** 0.05** 0.04** 0.01*** 0.05** 0.04** 0.01*** 0.05** 0.04** 0.01*** 
0.85 0.01*** 0.08* 0.05** 0.01*** 0.08* 0.05** 0.01*** 0.08* 0.05** 0.01*** 0.08* 0.05** 
0.90 0.11 0.09* 0.11 0.11 0.09* 0.11 0.11 0.07* 0.11 0.11 0.09* 0.11 
0.95 0.40 0.35 0.52 0.40 0.35 0.56 0.40 0.35 0.23 0.40 0.35 0.60 

[All τ]  0.01*** 0.08* 0.01*** 0.01*** 0.07* 0.01*** 0.01*** 0.09* 0.01*** 0.01*** 0.08* 0.01*** 

Notes: This table presents the subsampling p-values of the ST - test in eq 4. The term I∆US-Ep = 1,2,3 represents the number of lags of the dependant variable under 
the null-hypothesis: No Granger causality in eq 2. The subsample size is b=36 for our sample of T=138 observations. The notations *, ** and *** indicate rejections 
of the null-hypothesis at 10%, 5% and 1% significance levels. The US-EP, VIX, EPU and GPR series is in log and first difference. The STLFSI is in first difference only 
due to negative values in level. 
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More importantly, the results indicate an 
asymmetric impact in both market downturns (lower 
quantiles) and market upturns (upper quantiles).  

However, the uncertainty impact is significantly 
stronger in the upper quantiles, where the majority of 
the quantiles ranging from τ = {0,70 to 0,85} are at 1% 
significance level. In the lower quantiles τ = {0,10 to 0,25} 
there is causality running from VIX, EPU, GPR and STLFSI 
to ethanol price return at τ = {0,15} at the 1 % and 5 % 
significance levels in model specifications 1 to 3.  

For STLFSI there is also causality at τ = {0,10} at the 
1% and 5 % significance levels in model specifications 1 
to 3. These results indicate that uncertainty has an 
impact on medium, τ = {0,65 to 70}, to large increases, τ 
= {0,70 to 85}, in prices and returns (i.e. normal and good 
market conditions), as well as in large to extreme 
negative, τ = {0,10 to 0,15}, price (returns) for U.S. 
ethanol.  

Worth noticing is that all uncertainty measures, with 
some differences, seem to affect the U.S. ethanol price 
in the same manner, indicating an uncertainty 
mechanism specific to U.S. ethanol price.  

In summary, the results imply a slightly symmetrical 
impact pattern, with weak indications that uncertainty 
triggers changes in returns in the lower, towards the 
extreme, tails of the distribution. And also, a clear and 
much stronger indication that uncertainty impacts price 
(returns) in the upper tails of the distribution, with a 

slight shift towards the middle quantiles. These results 
suggest that U.S. ethanol prices are more affected by 
uncertainty when the market conditions are positive 
rather than negative. Also, uncertainty appears to 
interact with the biofuel prices in closer to normal 
market condition on the positive return side.  

3.2 Brazilian ethanol 

Table 6 displays the p-values of the Granger-causality 
in quantiles test for Brazilian ethanol price (returns). 
Considering all the quantiles, τ = {0.05 – 0.95}, there is 
causality in the direction running from all uncertainty 
indicators to Brazilian ethanol price at the 1 % 
significance level in all autoregressive model 
specifications.  

Alas, we cannot dismiss the situation that 
uncertainty is affecting the whole distribution. In the 
lower quantiles of the distribution there is causality at τ 
= {0.10} and at τ = {0.25} at the 1 % significance level for 
all uncertainty indicators and the results are robust for 
model specifications 1 to 3 of the auto-regressive model. 

For VIX, EPU and GPR there is also causality at τ = 
{0.15} at 1 % and 5 % significance level. This indicates that 
uncertainty impact the large negative changes in 
Brazilian ethanol prices. 

Considering the middle quantiles, there is causality 
at τ = {0.45} at the 1 % levels of significance and τ = {0.60} 
at the 1% and 10 % level of significance for all indices, 

Table 6 Quantile causality Brazilian ethanol price 
 ∆VIX to ∆BR-EP ∆EPU to ∆BR-EP ∆GPR to ∆BR-EP ∆ STLFSI to ∆BR-EP 

τ I∆BR-EP = 1 I∆BR-EP = 2 I∆BR-EP = 3 I∆BR-EP = 1 I∆BR-EP = 2 I∆BR-EP = 3 I∆BR-EP = 1 I∆BR-EP = 2 I∆BR-EP = 3 I∆BR-EP = 1 I∆BR-EP = 2 I∆BR-EP = 3 

0.05 0.37 0.17 0.21 0.62 0.02** 0.06* 0.56 0.07* 0.11 0.28 0.02** 0.02** 
0.10 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 
0.15 0.02** 0.01*** 0.01*** 0.02** 0.01*** 0.01*** 0.02** 0.01*** 0.01*** 0.01*** 0.17 0.17 
0.20 0.23 0.08* 0.01*** 0.23 0.08* 0.01*** 0.23 0.08* 0.01*** 0.23 0.02** 0.01*** 
0.25 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 
0.30 0.06* 0.30 0.25 0.06* 0.30 0.25 0.06* 0.30 0.25 0.06* 0.30 0.25 
0.35 0.07* 0.34 0.20 0.07* 0.34 0.19 0.07* 0.33 0.19 0.09* 0.33 0.21 

0.40 0.01*** 0.14 0.14 0.01*** 0.14 0.13 0.01*** 0.14 0.13 0.04*’ 0.17 0.13 
0.45 0.01*** 0.03** 0.01*** 0.01*** 0.03** 0.01*** 0.01*** 0.03** 0.01*** 0.01*** 0.04** 0.01*** 
0.50 0.03** 0.53 0.61 0.03** 0.51 0.59 0.04** 0.57 0.66 0.04** 0.55 0.65 
0.55 0.04** 0.29 0.30 0.02** 0.26 0.27 0.04** 0.32 0.30 0.04** 0.35 0.36 
0.60 0.02** 0.06* 0.01*** 0.02** 0.06* 0.01*** 0.02** 0.06* 0.04** 0.02** 0.04** 0.01*** 

0.65 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 
0.70 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 
0.75 0.01*** 0.11 0.07* 0.01*** 0.01*** 0.01*** 0.01*** 0.11 0.01*** 0.01*** 0.11 0.03** 
0.80 0.14 0.09* 0.03** 0.14 0.09* 0.03** 0.14 0.09* 0.03** 0.14 0.09* 0.03** 
0.85 0.01*** 0.01*** 0.28 0.01*** 0.01*** 0.28 0.01*** 0.01*** 0.30 0.01*** 0.01*** 0.28 
0.90 0.14 0.45 0.43 0.16 0.39 0.37 0.14 0.60 0.55 0.12 0.42 0.38 
0.95 0.49 0.27 0.27 0.50 0.24 0.27 0.74 0.25 0.28 0.49 0.24 0.27 

[All τ] 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 

Notes: This table presents the subsampling p-values of the ST - test in eq 4. The term I∆US-Ep = 1,2,3 represents the number of lags of the dependant variable under 
the null-hypothesis: No Granger causality in eq 2. The subsample size is b=36 for our sample of T=138 observations. The notations *, ** and *** indicate rejections 
of the null-hypothesis at 10%, 5% and 1% significance levels. The BR-EP, VIX, EPU and GPR series is in log and first difference. The STLFSI is in first difference only 
due to negative values in standard form. 
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showing that uncertainty has some effects in normal 
market conditions.  

While there are some indications that uncertainty 
causes moderate changes in ethanol prices in some 
quantiles, the overall assessment is that uncertainty has 
limited effects on the middle quantiles.  

In the upper quantiles there is causality at τ = {0.65 – 
0,70} at the 1 % level of significance for all uncertainty 
indicators and model specifications, indicating that 
uncertainty leads to large positive changes in Brazilian 
ethanol prices.  

As in the U.S. ethanol case, uncertainty can 
potentially lead to increasing demand for fuel types 
other than biofuel with positive impact on short run fuel 
prices. 

In the case of Brazilian ethanol prices, the analysis 
also displays a symmetrical uncertainty impact pattern in 
both the lower and the upper tails of the distribution. But 
unlike the U.S. ethanol and Malaysian palm oil, there is 
distinct indications that uncertainty also affects prices in 
the middle quantiles. 

3.3 Malaysian palm oil 

Table 7 presents the p-values of the Granger-
causality in quantiles test for the Malaysian palm oil 
returns. Considering all the quantiles, τ = {0.05 – 0.95}, 
there is causality in the direction running from all 
uncertainty indicators to Malaysian palm oil prices and 

returns at the 1 % level of significance in all models of the 
autoregressive models.  

A comparison between Granger-causality for U.S. 
and Brazilian ethanol and Malaysian palm oil prices 
indicates that the causality for the latter is more 
pronounced and consistent in the highest quantiles τ = 
{0.75-0.95}, making Malaysian palm oil prices the most 
responsive to increases in market volatility, US economic 
policy uncertainty, geopolitical risk and state 
vulnerability.  

In the lower distribution quantiles causality is 
observed at τ = {0.20} at the 1% level of significance and 
the results are also robust for model specification 1 to 3. 
There is also causality at τ = {0.35 – 0.40} at the 1% and 
5% levels of significance for all uncertainty measures. 

This indicates that uncertainty impact large negative 
or extreme negative changes in Malaysian palm oil 
returns.  

Considering the middle quantiles there is causality at 
τ = {0.40} at the 1% and 5% significance levels and at τ = 
{0.50} at the 1% and 10% significance levels for all 
indices. While there are some indications that 
uncertainty can cause moderate changes in ethanol 
prices in some quantiles, the overall assessment is that 
uncertainty has a limited effect on the middle quantiles 
for Malaysian palm oil returns (prices).  

Table 7 Quantile causality Malaysian palm oil price 
  ∆VIX to ∆MA-PP ∆EPU to ∆MA-PP ∆GPR to ∆MA-PP ∆STLFSI to ∆MA-PP 

τ I∆MA-PP = 1 I∆MA-PP = 2 I∆MA-PP = 3 I∆MA-PP = 1 I∆MA-PP = 2 I∆MA-PP = 3 I∆MA-PP = 1 I∆MA-PP = 2 I∆MA-PP = 3 I∆MA-PP = 1 I∆MA-PP = 2 I∆MA-PP = 3 

0.05 0.10* 0.01*** 0.01*** 0.12 0.01*** 0.01*** 0.10* 0.01*** 0.01*** 0.35 0.01*** 0.01*** 
0.10 0.36 0.33 0.32 0.36 0.33 0.32 0.36 0.33 0.32 0.36 0.33 0.31 
0.15 0.11 0.18 0.15 0.11 0.18 0.15 0.11 0.18 0.15 0.11 0.18 0.15 
0.20 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 
0.25 0.01*** 0.06* 0.01*** 0.01*** 0.06* 0.01*** 0.01*** 0.06* 0.04** 0.01*** 0.06* 0.03** 
0.30 0.05** 0.01*** 0.01*** 0.05** 0.01*** 0.01*** 0.05** 0.03** 0.02** 0.05** 0.08* 0.03** 
0.35 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.02** 

0.40 0.03** 0.01*** 0.05** 0.03** 0.01*** 0.05** 0.03** 0.01*** 0.05** 0.03** 0.01*** 0.05** 
0.45 0.15 0.15 0.13 0.15 0.15 0.13 0.20 0.24 0.17 0.11 0.17 0.12 
0.50 0.01*** 0.08* 0.08* 0.01*** 0.08* 0.03** 0.05** 0.10* 0.09* 0.01*** 0.08* 0.03** 
0.55 0.40 0.55 0.57 0.35 0.34 0.44 0.22 0.56 0.58 0.38 0.74 0.71 
0.60 0.96 0.34 0.36 0.89 0.26 0.24 0.66 0.27 0.24 0.95 0.41 0.46 

0.65 0.39 0.85 0.82 0.40 0.81 0.90 0.40 0.90 0.72 0.12 0.90 0.82 
0.70 0.77 0.12 0.13 0.73 0.12 0.13 0.37 0.02** 0.03** 0.56 0.11 0.13 
0.75 0.01*** 0.01*** 0.02** 0.01*** 0.01*** 0.02** 0.01*** 0.01*** 0.02** 0.01*** 0.01*** 0.02** 
0.80 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 
0.85 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 
0.90 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 
0.95 0.01*** 0.02** 0.07* 0.01*** 0.02** 0.07* 0.03** 0.02** 0.07* 0.01*** 0.02** 0.07* 

[All τ] 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 0.01*** 

Notes: This table presents the subsampling p-values of the ST – test in eq 4. The term I∆US-Ep = 1,2,3 represents the number of lags of the dependant variable under 
the null-hypothesis: No Granger causality in eq 2. The subsample size is b=36 for our sample of T=138 observations. The notations *, ** and *** indicate rejections 
of the null-hypothesis at 10%, 5% and 1% significance levels. The MA-PP, VIX, EPU and GPR series is in log and first difference. The STLFSI is in first difference only 
due to negative values in standard form. 
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In the upper quantiles there is causality at τ = {0.80 – 
0,90} and at the 1% significance level for all uncertainty 
indicators and model specifications.  

There is also causality at τ = {0.75} at 1% and 5% 
significance level for all indicators and at τ = {0,95} at 1% 
and 10% significance levels, indicating that uncertainty 
can leads to large or extreme positive changes in 
Malaysian palm oil returns and prices. The higher 
Granger causality values on the lower and upper 
quantiles for Malaysian palm oil prices shows that US 
economic policy uncertainty, geopolitical risk and state 
fragility impact palm oil prices asymmetrically.   

This implies that uncertainty would impact palm oil 
prices more severely, in turn perhaps affecting palm oil 
production, the price of substitute biofuels, and energy 
policy making in Malaysia [49].  

In summary, uncertainty has a stronger impact on 
Malaysian palm oil prices both near the middle quantiles 
as well as in the upper and extreme tails of the 
distribution. These results may indicate a sensitivity to 
uncertainty near normal market conditions on the 
downside market and to large and extreme positive 
returns. 

3.4 Discussion 

The quantile causality model presents quite 
interesting results in terms of market dynamics. Where 
both U.S and Brazilian ethanol prices display similar, but 
not identical, patterns. If we consider tables 5 to 7 as a 
visualisation of the studied biofuel markets, we can see 
that uncertainty causes prise changes closer to normal 
market conditions, while palm oil is more visibly 
asymmetrically affected. 

An interpretation of this pattern can be that the 
ethanol market is a more mature market and that actors 
react to uncertainty already at marginal price increases. 
And again, on the down market side, reacts to 
uncertainty at large negative price changes.  

In the case of Malaysian palm oil, actors react to 
uncertainty first at high positive price changes, 
alternatively to smaller negative prise changes.   

Hence, uncertainty can potentially increase demand 
for palm oil in biodiesel production, which in turn can 
cause an expansion of palm oil production and raise 
ethical issues concerning sustainability, deforestation 
and environmental damages [49]. 

3.5 Conclusions 

The price dynamics of biofuel will become an even 
more important factor in the future, especially in sectors 
where (bio)fuel expenditure constitute a significant 

share of the operational cost, such as in aviation and 
shipping. From a financial perspective, our model gives 
portfolio investors the opportunity for improved risk 
management and a way to effectively rebalance 
portfolios, including hedging and risk management 
strategies.  

The importance of biofuel price dynamics is even 
greater if we consider the perspectives of energy 
diversification, energy security, carbon emissions, and 
energy policy making. Price fluctuations in biofuel assets 
heavily influences the determination of investment and 
subsidies in the sector and in related energy sectors. In 
turn, affecting not only biofuel as an energy carrier, but 
also feedstock production and food supply.  

The implications of the results suggest that variables 
of political and global character such EPU, GPR and 
STLFSI should also be taken into consideration in the 
transition to a sustainable energy system. 

The obtained empirical results indicate that all US, 
Brazil and Malaysia ethanol and palm oil prices are all 
affected by changes in market volatility, US economic 
policy uncertainty, global geopolitical risk and financial 
stress. Both downside and upside asymmetric 
characteristics are identified in all three biofuel markets, 
in with uncertainty (i.e., VIX, EPU, GPR, STLFSI) impacts 
more strongly in good market conditions rather than bad 
market conditions. High Malaysian palm oil prices are 
more susceptible to uncertainty and generally 
uncertainty more strongly influence increases rather 
than decreases in ethanol and palm oil prices. 

According to our model, uncertainty causes large 
negative price changes in the biofuel commodities, while 
moderate uncertainty changes only moderately impacts 
prices. And finally, uncertainty also causes large or 
extreme positive changes in the prices of ethanol and 
palm oil. 

Uncertainty measures, and non-linear approaches 
like quantile causality, provides actors in the whole 
ethanol and palm oil value chain, like corn and palm 
growers, the possibility to monitor the price dynamics of 
biofuels in a straightforward manner when deciding 
production output and developing appropriate policy 
guidelines related to subsidizing and energy sector 
investment. 
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