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ABSTRACT 
In this paper, gas-solid heat transfer in waste heat 

recovery device with different pipeline arrangements is 
studied. The pipeline can enhance heat transfer in 
waste heat recovery device, and the system with 
pipeline has higher outlet gas temperature. Compared 
with paralleled arrangement, temperature distribution 
of staggered arrangement is more uniform and heat 
transfer is better. It addition, the decrease of inlet 
velocity and particle diameter can improve the outlet 
gas temperature.  

Keywords: waste heat recovery device, porous media, 
local thermal non-equilibrium, gas solid heat transfer.  

NONMENCLATURE 

u velocity (m/s)  
T temperature(K) 
h heat transfer coefficient (Wm-1K-1) 
d particle diameter (m) 
c specific heat (Jkg-1K-1) 
Nu Nusselt number (-) 
Symbols 

  porosity (-)
  thermal conductivity (Wm-2K-1)
 dynamic viscosity (m2/s)
 density (kg/m3)

1. INTRODUCTION
The steel industry has always been the top priority

of the national industry, and the energy consumption of 
blast furnace steelmaking can reach 40% of total energy 
consumption in the steel industry, 10%~15% of total 
energy consumption in the country, belonging to the 
high energy-consuming industry [1].  

For these high-grade waste heat, many scholars 
have proposed different heat recovery methods, such 
as packed bed waste heat recovery [2-5], gravity bed 
waste heat recovery [6-8], fluidized bed heat back 
program waste heat recovery [9]. However, there is still 
a lack of research on gas-solid heat transfer with 
different pipeline arrangements.  

In this paper, gas-solid heat transfer in waste heat 
recovery device with different pipeline arrangements is 
simulated and analyzed. In addition, the effects of 
pipeline arrangement, intake velocity and particle 
diameter are further considered. 

2. PHYSICAL MODEL AND VALIDATION

2.1  Physical model

The schematic diagram of waste heat recovery 
device is shown in Fig 1, and different pipeline 
arrangements are studied. High temperature granular 
and cold gas exist countercurrent flow heat transfer, 
and the cooled particles and high temperature gas are 
obtained for subsequent processes.  

(a) Without (b) Paralleled (c) Staggered pipeline
Fig 1 Waste heat recovery device 

The gas-solid heat transfer is complex, so the 
following assumptions are made: 
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(1). The simulation process is steady state, and the 
operating parameters are constant; 

(2). Porous media model is used for simulation, 
Porous media is a homogenous material, and the 
temperature of the particles is uniform. 

(3). Considering convection and heat conduction 
between the solid and the fluid in the porous media, 
regardless of influence of radiation and heat loss; 

2.2 Governing equation 

Gas continuous equation: 
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When porous media model is used, source term is 
added to momentum equation as: 
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where the viscous resistance coefficient and the inertia 
resistance coefficient can be expressed as [10]: 
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The local thermal non-equilibrium energy equations 
are: 
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The Nu is used association proposed by Wakao [11]: 
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The internal heat transfer of particles on the overall 
heat transfer coefficient is considered. The effective 
heat transfer coefficient according to Jeffreson [12] can 
be expressed as: 
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Where the thermal capacity ratio β and the heat 
capacity ration VH can be expressed as: 
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According to Achenbach [13], the specific surface 
area can be expressed as: 
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The equations are solved by Fluent. The local 
thermal non-equilibrium energy equations are 
corrected by UDF and UDS. The material density, 
specific heat and other parameters are set by UDF. The 
grid is divided by ICEM, and the pressure velocity 
coupling is solved by SIMPLE. The turbulence model 
adopts k-ε model, and residual convergence criterion is 
less than 10-6. 

The air density is 1.225 kg/m3, and particle density 
is 2900 kg/m3

. Specific heat of gas and particle can be 
calculated as follows: 
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2.3 Model Validation 

Experimental results of steady heat recovery from 
Feng et al [14] are used to verify present model. The 
experimental and simulation results are compared as 
Table 1, and they have good agreement. 

3. RESULTS AND DISCUSSION 

3.1 Basic heat transfer performance 

Fig 2 presents temperature distributions in different 
heat recovery devices. When there are pipelines, the 
flow changes, and then gas-solid heat transfer will be 
significantly enhanced.

Table 1 Simulation and experimental comparison

 Experimental condition 
Particle outlet temperature (K) Air outlet temperature (K) 

Measurement Calculation Relative error Measurement Calculation Relative error 

condition 1 394 412 3.74% 795 784 -2.24% 

condition 2 379 398 3.62% 748 735 -2.94% 

condition 3 383 396 2.56% 756 744 -2.66% 
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293     439     585     731     877    1023 K 

  
(a) gas temperature (b) particle temperature 

  
(c) gas temperature (d) particle temperature 

Fig 2 Temperature in different systems 
 

Compared with paralleled pipeline arrangement, 
the staggered arrangement can reduce the temperature 
heterogeneity in the heat transfer process, and heat 
transfer is expected to be enhanced better. 

3.2 Effect of inlet gas velocity 

Fig 3 shows outlet gas and particle temperatures 
with different inlet gas velocity in different internal 
components. The outlet gas temperature in staggered 
pipeline system is higher than that in paralleled one, 
and that without pipeline is lowest. As a result, heat 
transfer with staggered pipeline is better, because its 
temperature distribution is more uniform as Fig. 2.  
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Fig. 3 Outlet gas and particle temperatures with different 

inlet gas velocity 

In addition, outlet gas temperature drops with inlet 
gas velocity increasing. As inlet gas velocity increases, 
heat transfer between gas and particle increases, which 
leads to a decrease in outlet particle temperature. At 
the same time, mass flow rate of gas becomes larger, 
and outlet gas temperature decreases. 

3.3 Effect of inlet gas temperature 

Fig 4 shows outlet gas and particle temperatures 
with different inlet gas temperatures. In general, outlet 
gas and particle temperatures have similar tendencies 
with different inlet gas temperatures and compounds. 
As inlet gas temperature is increased, inlet enthalpy of 
gas increases, and outlet temperatures of gas and 
particle almost linearly rise, and outlet particle 
temperature changes more quickly. 
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Fig 4 Outlet gas and particle temperatures with different inlet 

gas temperatures 

 

3.4 Effect of particle diameter 
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Fig. 5 Outlet gas and particle temperatures with different 

particle diameters 
 

Fig. 5 shows outlet gas and particle temperatures 
with different particle diameters. As the particle 
diameter is reduced, gas-solid heat transfer area and 
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effective heat transfer coefficient increase significantly, 
so outlet gas temperature increases and outlet particle 
temperature decreases. The outlet temperatures of gas 
and particle in the system with/without pipeline have 
similar tendency, and that with staggered arrangement 
has best performance. 

3.5 Effect of pipe wall condition 

Fig. 6 shows outlet gas and particle temperatures 
with different pipe temperature. As the pipe wall 
temperature increases, outlet temperatures of gas and 
the particles increases. 
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Fig. 6 Outlet gas and particle temperatures with different 

pipe temperature 
 

4. CONCLUSIONS 
The gas-solid heat transfer in waste heat recovery 

device with different pipeline arrangements is studied, 
and conclusions are as follows. 

(1) When there are pipelines, gas-solid heat transfer 
can be significantly enhanced. Compared with 
paralleled arrangement, the system with staggered 
arrangement has more uniform temperature 
distribution and higher outlet gas temperature. 

(2) As inlet gas temperature/pipe wall temperature 
increase or gas velocity decreases, outlet temperatures 
of gas and particle both increase. As particle diameter is 
reduced, effective heat transfer coefficient increases, so 
outlet gas temperature increases and outlet particle 
temperature decreases. 
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