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ABSTRACT 
 Cities are requiring more energy by increasing the 

population. Among urban elements, buildings account 
for about 40% of energy demands and 30% of carbon 
dioxide emissions globally. To address the increasing 
energy demands and environmental responsibility from 
the population growth, existing buildings should be 
transformed into high energy efficient forms while 
satisfying human comfort. This research explores a 
transformative model optimizing energy balance and 
indoor thermal comfort based on building forms. The 
transformative model is built based on analyzing 903 
buildings in Sumida-ward, Tokyo, Japan. The result 
enables city planners to predict urban building 
performance based on planning or designing building 
typologies. The model can contribute to planning an 
optimal urban buildings’ retrofitting or redevelopment 
for future smart and sustainable communities.  
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1. INTRODUCTION 
Cities are consuming more energy due to the 

population growth as expected that about 66% of the 
world population will live in urban areas by 2050 [1]. The 
population growth increases energy demands and 
environmental responsibility of urban areas [2]. Among 
urban elements, buildings consume about 20-40% of 
total energy use in developed countries [3]. 
Corresponded by energy uses, buildings contribute to 

more than 30% of carbon dioxide (CO2) emissions [4]. To 
reduce energy demands and related CO2 emissions, 
existing buildings should be reviewed to find the ways of 
transforming into energy-efficient forms. The 
transformations should also not compromise indoor 
human comfort. 

In the future, under the framework presented in Fig 
1, an integrated urban typology response model should 
be established by integrating a change model of urban 
buildings and a change model of urban mobility network. 
The impacts of urban buildings’ transformations are still 
unrevealed because of their complex and dynamic 
relationships with multiple performance indicators. Also, 
buildings contribute to energy efficiency and 
environmental responsibility of urban area. In this 
respect, this research focuses on a transformative model 
for urban buildings for the future smart communities. 

This research investigates existing urban buildings to 
build a change model enabling building forms to be 
transformed into energy-efficient forms while achieving 
indoor thermal comfort. Building typology and 
performance of energy balance and indoor thermal 
comfort are analyzed by testing 903 buildings located in 
Kyojima, Sumida-ward, Tokyo, Japan. The transformative 
model is formed with considering uncertainties in 
performance indicators and urban building typology 
through a Bayesian approach. The results of this 
approach can be referred for planning future urban 
building typologies by providing how much building 
forms impact on the energy and comfort performance.  
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2. RESEARCH BACKGROUND 
Parasonis et al. (2012) has studied relationships 

between building geometric parameters (i.e., length, 
envelope area, and internal floor area) and energy 
demands [5]. The results provide the optimal building 
envelope area and compactness for reducing energy 
uses. Premrov et al. (2016) has examined eight building 
shapes to identify their impacts on energy performance 
[6]. Rashdi and Embi (2016) have also studied impacts of 
building shape on cooling loads with constraining floor 
area, volume, and height [7]. These findings can guide 
designers to determine the optimal shape for reducing 
cooling loads. Those research efforts have focused on 
recognizing relationships between building geometric 
parameters and energy performance or solar potential. 
The findings can support to establish urban 
transformation strategies. However, the methods have 
tested virtual building shapes, and their parameters have 
been assumed to increment proportionally. This can limit 
to reflecting actual building typological characteristics. 
Also, building typology can influence multiple urban 
performance including energy demands, indoor thermal 
comfort, and solar harvesting potential. 

Rodriguez-Alvares (2016) investigated current urban 
fabric for five European cities, and presented energy 
performance (thermal and lighting loads) of urban 
buildings [8]. Morganti et al. (2017) tested 14 urban 
morphologies and identified potential solar irradiation 
along with three independent variables of the ratio of 
built area to the site area, the ratio of vertical surface 
area to floor area, and the sky factor on the façades [9]. 
The specified results enable urban planners to 
incorporate energy performance and solar potential at 

the preliminary stages of urban planning. Those 
approaches have isolated the contribution of different 
parameters individually to understand the influence of 
factors clearly. However, the isolation can distort the 
relationships when effects are combined. 

To address current challenges, this research tests 
actual urban building typologies in Tokyo, and considers 
possible significant variables as regressors collectively. 

3. RESEARCH METHODOLOGY 
This research proposes to establish a change model 

which enables urban buildings to be transformed with 
meeting energy security and efficiency and indoor 
thermal comfort. Fig 2 shows the research methodology 
integrating parametric modeling and statistical 
modeling. Parametric modeling evaluates three urban 
buildings’ performance: energy demands, indoor 
thermal comfort, and solar harvesting potential. Based 
on current conditions of urban buildings, statistical 
approach is used to identify relationships between urban 
building typology and their performance. Bayesian 
multilevel modeling identifies significant variables and 
detects the impacts of the important variables on the 
urban performance indicators. The results of statistical 
approaches are used to build a change model of 
transforming urban building typologies, and the model 
can be used to recognize performance variations along 
with changes in urban buildings typologies. 

3.1 Parametric modeling 

Parametric modeling using Rhinoceros 3D and 
Grasshopper plugin is implemented [2,10]. Ladybug 
plugin for Grasshopper is used to run solar irradiation 
analysis considering building envelopes of roof and 

 
Fig 1 Conceptual framework for transforming urban buildings within urban systems design 
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vertical walls and nearby buildings as shading effects. 
Honeybee plugin for Grasshopper simulates EnergyPlus 
for analyzing hourly building energy demands. Based on 
the indoor environment provided by building energy use, 
indoor thermal comfort is evaluated using PMV 
(Predicted Mean Vote) calculator in Ladybug plugin. PMV 
between -0.5 and +0.5 is considered as comfortable 
thermal levels [11,12]. In this research, three measures: 
building energy demands, percentages of indoor thermal 
comfort, and solar irradiation of building envelopes are 
evaluated as urban building performance indicators. 

3.2 Statistical modeling: Bayesian multilevel modeling 

Bayesian multilevel modeling is used to consider 
population effects of building typology parameters as 
well as group effects of them [13]. After modeling by 
using all building typology parameters and energy 
demands, significant parameters minimizing 
generalization errors to predict energy demands are 
used to build the change model conducting reliable 
predictions of urban building performance based on 
important typology variables. This approach can consider 
uncertainties by providing confidential intervals of 
regression coefficients and estimating the posterior 
distributions of parameters [14]. 

 

4. STUDY AREA AND ANALYSIS 

Buildings in a superblock (Cho-cho-moku) located in 
Kyojima 1-chome, Sumida-ward, Tokyo, Japan is 
analyzed. Out of all buildings, three buildings are 
megastructure of concave geometry, and parametric 
modeling of energy simulation keeps providing errors to 
form thermal zones. Except the three buildings, 903 
buildings out of 906 buildings are analyzed. 

4.1 Parametric modeling results 

Parametric modeling inputs are building geometry 
(floor area, height, etc.), building structure (wood, 
concrete, or streel), and building land use (residential, 
office, commercial, mixed, or special). All buildings’ 
window-wall ratio is assumed to be fixed values of 40% 
of north, 25% of east, and 20% of south and west. This 
enables us to compare energy demands of building 
typologies under controlling building parameters rather 
than typology. Based on predicted energy (Fig 3 left) 
required to form the certain indoor environment (the 
setpoint of cooling is 23.9℃ and the setpoint of heating 
is 21.1℃), indoor thermal comfort is calculated using 
PMV metrics. The percentage of comfort time is detected 
in Fig 3 (right). In that solar irradiation is influenced by 
surrounding context, the solar irradiations on façades in 
a block is averaged and projected in Fig 3 (middle). 

 

4.2 Relationships between typology and performance  

Building typology parameters: structure, number of 
floors, number of rooms, number of each room type 
(household, office, vacancy, and other), percentages of 
households, offices, vacancies, or others in each building 
(denoted as S_HH, S_OFF, S_VAC, and S_OTH, 
respectively), height, stories, floor area, total floor area, 
total floor area of the space type, average area of the 
space type (total floor area of a room type divided by the 
number of the room type), land use, rise type, use (single 
or mixed use), and projected building population, are 
detected. Performance indicators of energy use 
intensity, solar irradiation potential, and indoor thermal 
comfort are considered. The relationships between 
urban building parameters and each performance 
indicator are discussed in the following sections.  

 
4.2.1 Building typology and energy predictions 

Among building parameters, structure, height, 
stories, floor area, land use, S_HH, S_OFF, S_VAC, S_OTH, 
rise type, use (single or mixed use) can explain the energy 
predictions with minimized generalization error. Those 

 
Fig 2 Research methodology 
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variables are used to predict energy demands by using 
Bayesian multilevel additive regression model.  

Rise type is categorized based on building heights. 
Above ground level height is used to transform height to 
stories every 4 meters for building height less than 8 
meters [15] and every 3 meters for building height equal 
to or greater than 8 meters [16]. Six rise types are 
identified: Single Story (1 story), Low rise (2 to 7), Mid 
Rise (8 to 20), High Rise (21 to 130), Super High Rise (130 
to 200), and Mega High Rise (200 or more). Land use 
variables are simplified five types: office, residential, 
commercial, retail, and mixed. Use variable means single 
or mixed use of buildings. 

(i) Population effects for continuous variables 
(Height, stories, and floor area), (ii) non-linear 
interaction effects for S_HH, S_OFF, S_VAC, and S_OTH, 
and (iii) group effects for categorical variables (structure, 
rise type, land use, and use) are assumed. 

 

𝑦𝑖𝑗 = ∑ 𝛼𝑗 +

𝐽

𝑗=1

∑ 𝑥𝑖𝑗,𝑘𝛽𝑘

𝐾

𝑘=1

+ ∑ 𝑓𝑞

𝑄

𝑞=1

(𝑧𝑖𝑗,𝑞) + 𝜀𝑖𝑗  

 

where 𝑖 denotes the index of the measurement 
interval; 𝑗 denotes structure, land use, rise type, or use 
of the measurement (𝐽=4); 𝑦𝑖𝑗 is the explained variable; 
𝛼𝑗 is the random intercept for the structure, land use, rise 
type, or use, and is assumed to come from a normally 
distribution with mean zero and unknown variance; 𝑥𝑖𝑗,𝑘 
are the regressors from height, stories, floor area (𝐾=3); 
𝛽𝑘 are the fixed regression coefficient including the fixed 
intercept; 𝑧𝑖,𝑞 are the regressors from S_HH, S_OFF, 
S_VAC, and S_OTH (𝑄=4) whose impact on 𝑦𝑖 are possibly 
non-linear; 𝑓𝑞(⋅) are the smoothing spline function as 
which we used the bivariate tensor spline function 
recently developed by Wood et al. (2013) for modeling 
the non-linear impact [17], 𝜀𝑖𝑗 are the mean zero and 
unknown variance normally distributed disturbance. 

Table 1 shows relationships between performance 
indicators of energy demands, solar irradiation, and 
indoor thermal comfort and building typologies. Based 
on the significance of the parameters, the model 
predicting energy demands can be simplified to have 
building parameters of floor are, structure, land use, rise 
type, use, and combined effect of percentages of 
households, of offices, of vacancies, and of others. We 
checked the convergence of the all coefficients in the 
Bayesian model by Gelman and Rubin (1992)'s methods 
[18]. 
 

4.2.2 Urban building typology and solar irradiation 

Solar irradiation considers radiation reached on each 
façade to represent solar harvesting potential. Since the 
solar irradiation is influenced by shading effects, this 
research scales up the solar potential in block levels to 
consider urban context. Block numbers are provided to 
the response variable of solar radiation as an additional 
information to define the data [19]. 
 
4.2.3 Building typology and indoor thermal comfort 

In Table 1, building stories have a linear positive 
relationship on the indoor thermal comfort. The non-
linear combined effects for percentages of space types 
are significantly influencing the indoor thermal comfort. 
Also, the comfort indicator will be different in different 
groups of structure, land use, rise type, and use. 

4.3 The transformative model optimizing trade-offs  

According to the results of Bayesian multilevel 
modeling for each performance indicator and building 
typology in Table 1, increasing the floor area of buildings 
can reduce energy demands per unit area and increase 
solar irradiation. Although the height of buildings is not 
statistically significant to energy predictions or solar 

Table 1 Relationships between urban building performance indicators and building typologies 

Responses Energy predictions Solar irradiation Indoor thermal comfort 

Effects Predictors Mean (95% CI) Significance* 

(i) Linear 
Population effect 

Height –0.31 (–0.93, 0.27) –0.23 (–0.49, 0.02) 0.04 (–0.04, 0.12) 

Stories –0.83 (–2.57, 1.02) –0.37 (–1.09, 0.40) 0.77 (0.52, 1.01) * 

Floor Area –0.04 (–0.06, –0.03) * 0.01 (0.00, 0.01) * 0.00 (0.00, 0.00) 

(ii) Non-linear 
Combined effect 

f(S_HH, S_OFF, 
S_VAC, S_OTH) Non-linearity assumed * 

(iii) Linear Group 
effect 

Structure 22.23 (6.79, 63.13) * 3.04 (0.07, 12.60) * 1.65 (0.05, 8.55) * 

Land Use 17.00 (5.65, 39.58) * 4.84 (0.47, 12.09) * 6.53 (3.09, 13.93) * 

Rise Type 38.59 (15.32, 83.94) * 4.37 (0.14, 14.82) * 6.01 (1.98, 14.11) * 

Use 17.19 (0.49, 62.94) * 13.03 (3.75, 34.57) * 4.32 (0.05, 16.44) * 
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irradiation, the tendency of decreasing predicted energy 
demands (kWh/m2) or solar irradiation can be observed 
when increasing buildings’ height (Fig 4). On the other, 
increasing building heights can improve the percentages 
of comfortable time (Fig 4). When floor area increases, 
predicted energy demands per unit area decrease (Fig 5). 
This finding is also aligned the finding from previous 
research conducted by Rodriguez-Alvarez [8]. Non-
linearity assumption of combinations of room type holds 
for all performance indicators. 

Group effects (structure, land use, rise type, and use) 
are all significantly influencing performance indicators, 
and trade-offs by group effects are observed as below. 

• While comfort level or solar irradiations are achieved 
similar levels across the structure, concrete-
structured buildings outperform for reducing energy 
demands. 

• Operations by office schedule can reduce building 
energy, and operations by residential schedule can 
secure comfort levels (Fig 6 left).  

• Regardless of their land use, about 95% of buildings 
can achieve more than 125 kWh/m2 of solar 
harvesting potential during June 1st to August 31st. 

• Midrise type is the best for energy demand 
reductions, and about 97.5% of single-story buildings 
demand more energy than about 90% of midrise 
buildings. Low-rise type is better for comfort than 
midrise type. Solar irradiation is similarly distributed 
across rise types. 

• Mixed used buildings are better for three 
performance indicators than single used buildings. 

5. CONCLUSIONS 
This research explored relationships between urban 

building typologies and performance of energy balance 
(energy demands and solar potential) and indoor 
thermal comfort for 903 buildings in Kyojima, Tokyo, 
Japan. While increasing building heights for energy use 
intensity and indoor thermal comfort, the average 
heights in a block should be moderate for including the 
considerations of solar irradiation. It can indicate the 
imbalance of energy self-sufficient rate of individual 

   
Fig 4 Population effects of height: X-coordinate all represents building height and Y-coordinate represents predicted 

energy demands (left), solar irradiation (middle), and indoor thermal comfort (right) 

   
Fig 5 Population effects of floor area: X-coordinate all represents building floor area and Y-coordinate represents 

predicted energy demands (left), solar irradiation (middle), and indoor thermal comfort (right) 

   
Fig 6 Group effects of land use type: X-coordinate represents predicted energy demands (left), solar irradiation 

(middle), and indoor thermal comfort (right), and Y-coordinate represents land use; special, residential, office, mixed, 
commercial (from the top to the bottom) 
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buildings. In this respect, sharing energy generations can 
be discussed in a block level. 

The results provide a transformative model to 
recognize changes in urban performance along with 
changes in urban building parameters. This will provide 
city planners or designers with potential impacts of 
retrofitting or redeveloping urban buildings. Also, this 
information can be referred to establishing new category 
of urban buildings to manage performance-based 
planning of communities and urban buildings. 
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