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ABSTRACT 

 A new geospatial multi-criteria decision analysis 
method with spatial regression was proposed and 
implemented to identify Japan’s high-quality onshore 
wind energy potential in 2030. After identifying the 
economic potential of grid-connected onshore wind with 
a GIS-based multicriteria method, logistic regression and 
Conditional Autoregressive (CAR) regression was used to 
create a predictive model of development probability 
and evaluated with ROC curve. Other than economic 
costs, the model showed other physical, environmental, 
social factors, and spatial heterogeneity are 
incorporated to rank the overall quality of potential. The 
results also showed far more high-quality onshore wind 
potential exists in Japan than the 10 GW target in 2030.  
Keywords: renewable energy, geospatial multi-criteria 
decision analysis, spatial regression, environment and 
climate change, capacity expansion planning, Asia 

NONMENCLATURE 

Abbreviations  

LCOE Levelized Cost of Electricity  
POAs Project Opportunity Areas 

1. INTRODUCTION 
Under the Paris Agreement to address climate 

change, all signatory countries are to submit long-term 
national strategies to reduce greenhouse gas (GHG) 
emissions by 2050. The development of renewable 
energy (RE) resources, such as wind and solar power, is 
one of the central pillars of the national strategies. 
Integrating RE into national energy planning poses 
difficulties as follows. First, the geospatial distribution of 

RE resources are typically uneven, therefore frequently 
requiring the construction and/or expansion of 
transmission lines. Second, the temporal variability of RE 
output constraints the grid integration of RE. It is, 
therefore, essential to identify the potential of RE 
resources with sufficient geospatial resolution. 

Although the economic costs of RE are critically 
important for energy planning, other criteria, such as 
environmental, social, and political criteria, are also 
accounted for in the decision-making process and 
realization of RE potential. A wide range of multi-criteria 
decision analysis (MCDA) has been developed to address 
the problem. However, current MCDA methods for RE 
planning do not use empirical data of past RE 
development to identify the relative importance of 
various criteria.  

This study proposes a new MCDA method with 
geospatial regression to identify the relative importance 
of various criteria and integrate them in estimating the 
overall quality of candidate sites, using Japan’s onshore 
wind development as a case study. 

2. METHODS 

2.1 Identification of POAs, calculation of the features of 
each POA, and creation of LCOE curve 

First, we employed the geospatial multi-criteria 
analysis model (MapRE) to identify the economic 
potential of grid-connected onshore wind in Japan 
(detailed methods are described in [1], [2]). We 
identified high-quality project opportunity areas for 
onshore wind power in Japan by applying industry 
standard exclusion criteria (summarized in Table 1) 
using a combination of global- and country-specific 
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datasets, which can be categorized into physical, socio- 
economic, technical, and environmental. We then 
divided the identified suitable areas into 5 × 5 km 
spatial grids, called “Project Opportunity Areas (POAs)”. 
Finally, we estimated site selection criteria values for 
each project opportunity area, including levelized costs 
of electricity (LCOE). We calculated current and future 
LCOE in 2030 using future cost projection to identify 
future economic investment opportunity. 

Table 1. Exclusion criteria 

Criteria Exclusion threshold/category 
Average wind speed Less than 5 m/s 
Population density More than 500 person /km2 
Distance from:  
   residential areas  Less than 500 m 
   road and rails Less than 500 m 
   water areas Less than 500 m 
   protected areas Less than 500 m 
Land-use category 
by Geographical 
Survey Institute 

Ricepaddy, protected forest, urban 
and built-up area, roads, rails, other 
use, river, lake, ocean, golf course 

2.2 Statistical analysis for estimating influential factors 

  Next, we conducted statistical analysis to 
examine which factors are significantly associated with 
the development of the POAs, using the POAs and 
existing and planned wind farms. We implemented 
logistic regression. Because the results showed spatial 
autocorrelation in the regression residuals, which leads 
to incorrect estimates of coefficients, we then 
implemented Conditional Autoregressive (CAR) spatial 
regression to account for first-order spatial effect, 
leading to smaller spatial autocorrelation and less 
unbiased estimate of coefficients of regressions. 

2.2.1 Training set and test set 

We used existing wind farms as of 2017 and all POAs 
as a training set to estimate coefficients of the model and 
make inferences. Then, we used planned wind farms and 
POAs, after eliminating already developed POAs, to 
evaluate the predictive performance of the models, true 
positive rate and false positive rate of the regression 
models.    

2.2.2 Dependent variable 

Dependent variable Y = 1 if POA is developed, and 
Y = 0 otherwise. We coded the development of each 
POA as follows. Because we have the coordinates of each 
turbine, we coded Y = 1 if POA is within 2 km distance 

of at least one turbine. On the other hand, since we have 
only the centroid of planned wind farms, we coded Y =
1 if POA is within 5 km distance of the centroid of at least 
one planned wind farm. 

2.2.3 Independent variables 

Based on literature reviews and interviews of 
industrial experts in Japan, we identified the following 
key variables which potentially affect the investment 
decision of wind farms: distance to road whose width is 
wider than 5.5m; distance to high voltage transmission 
line whose voltage is higher than 7 kV; distance to large 
ports; distance to residential areas; distance to legally 
protected areas; distance to cities whose population is 
greater than 100,000; elevation; slope; and balancing 
authority. These distances and the mean values were 
computed for each POA. 

2.3 Ranking high quality POAs in 2030 

Using the prediction model, we ranked the POAs 
whose LCOE is lower than the grid electricity costs in 
terms of overall quality in 2030.  

3. RESULTS AND DISCUSSION 

3.1 Identification of POAs, calculation of the features of 
each POA, and creation of LCOE curve 

After applying exclusion criteria, we created 9,749 
POAs. Then, we calculated site selection criteria values of 
each POA. Table 2 summarizes the descriptive statistics.  

Table 2. Site selection criteria values of POAs 

Variable Mean (SD) Unit 
Generation LCOE   
  2017 116 (18) USD/MWh 
  2030 72 (11) USD/MWh 
Total LCOE   
  2017 133 (25) USD/MWh 
  2030 86 (19) USD/MWh 
Distance to:   
  Road 0.95 (5.57) km 
  Transmission line 6.63 (13.93) km 
  Port 41.30 (23.67) km 
  Major city 38.71 (36.11) km 
  Residence 2.51 (5.47) km 
  Protected area 15.73 (14.58) km 
Mean elevation 446 (338) m 
Mean slope 18 (7) degree 
Mean population density 0.45 (5.51) Person/km2 
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Using the total LCOE values of 9,749, the total LCOE 
curves in 2017 (red) and 2030 (blue) were created as Fig. 
1. Although there is only 2.5 GW capacity below the 
median costs of grid electricity in FY 2018 (83.6 
USD/MWh), the cost reduction increases the capacity 
below the level of the grid electricity cost to 158 GW in 
2030. As stated in the introduction, however, factors 
other than economic costs also affect the feasibility of 
the project costs and must be integrated into the energy 
planning decision-making process. 

 

3.2 Statistical analysis for estimating influential factors 
and ranking high quality POAs 

Of the vast economic capacity of onshore wind 
capacity in 2030, we ranked relative overall quality of the 
capacity incorporating the different factors in addition to 
economic costs, by creating a predictive model of 
investment using the past investment decisions (i.e. 
training data). Table 3 shows the mean coefficient and 
95% confidence interval of logistic regression and the 
posterior median coefficient and 95% Bayes credible 
interval of CAR regression. Generation LCOE, distances to 
wide roads, major ports, residences, and mean slope 
showed significant negative correlation with the 
development of POAs. Distance to major cities and mean 
elevation showed positive correlation with POA 
development. Positive and significant sigma 2 represent 
positive spatial autocorrelation of errors, which implies 
spatial heterogeneity exist and are controlled in 
estimating coefficients in CAR regression model. Also, 
Moran’s I statistic of CAR regression residuals greatly 
decreased compared with that of logistic regression. In 
addition to economic costs (i.e. generation LCOE), there 
are numerous factors that could affect investment 

decisions. Distance to high-voltage transmission lines did 
not significantly correlate with POA development.  

The predictive performance of two models for test 
data was evaluated by ROC curves in Fig 2. ROC curves of 
CAR regression outperform that of logistic regression by 
a significant amount near the left axis. In other words, 
the true positive rate conditional upon false positive rate 
of CAR regression was higher than that of logistic 
regression. For example, conditional upon the false 
positive rate is 0.01, the true positive rate of CAR 
regression is 0.27, while that of logistic regression is 0.03. 
The results indicated that the predictive performance of 
the CAR regression is greatly improved compared with 
the logistic information. Therefore, we used the CAR 
regression model in later sections to integrate various 
siting criteria values. 

The results indicate that economic costs, which is 
represented by generation LCOE, is only one part of the 
predictive factors.  

Table 3. Regression results 

 Logistic regression CAR regression 
(spatial regression) 

Variable Coefficient, mean  
(95% confidence 
interval) 

Coefficient, 
posterior median 
(95% Bayes credible 
interval) 

Gen LCOE -0.0307 
(-0.0365 to -0.0249) 

-0.0135 
(-0.0215 to -0.0060) 

Distance to:   
Road -0.3172 

(-0.6551 to -0.1194) 
-0.4181 

(-0.6368 to -0.1864) 
Transmission 
line 

0.0063 
(-0.0013 to 0.0134) 

0.0064 
(-0.0170 to 0.0284) 

Port -0.0101 
(-0.0155 to -0.0048) 

-0.0181 
(-0.0311 to -0.0047) 

Major city 0.0033 
(0.0008 to 0.0057) 

0.0326 
(0.0210 to 0.0445) 

Residence -0.0002 
(-0.0004 to -0.0001) 

-0.0002 
(-0.0004 to -0.0001) 

Protected 
area 

0.0000 
(-0.0000 to 0.0000) 

0.0000 
(-0.0000 to 0.0000) 

Mean 
elevation 

-0.0003 
(-0.0009 to 0.0002) 

0.0020 
(0.0010 to 0.0031) 

Mean slope -0.0544 
(-0.0737 to -0.0351) 

-0.0748 
(-0.1063 to -0.0445) 

Utility controlled controlled 
Tau2 - 2.8398 

(2.2285 to 3.5908) 
Sigma2 - 0.0105 

(0.0032 to 0.0332) 
Moran’s I of 
residuals 

0.555 0.221 

 
Fig 1 Total Levelized Cost of Electricity of onshore wind 

power in 2017 (red) and 2030 (blue) 
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3.3 Ranking high overall quality wind power potential in 
2030 

Using POAs’ criteria values in 2030 and the estimated 
CAR regression model, we evaluated overall quality of 
wind energy potential with lower LCOE than the grid 
electricity cost (83.6 USD/kWh). Because the Japanese 
government plans to discontinue subsidies for onshore 
wind power, currently provided under the Feed in Tariff 
program, onshore wind power needs to be at least cost-
competitive with the grid electricity cost.  

We can further incorporate information other than 
the LCOE by using predicted probability by CAR 

regression. We ordered the predicted probability of such 
POAs from highest to lowest and put them in five 20% 
bins from Q1 (highest probability) to Q5 (lowest 
probability).  

Out of 153 GW, total capacity of Q1 (i.e. top 20% 
probability) is 28 GW. Although Hokkaido and Tohoku 
have 65 GW and 41 GW, respectively, Q1 in these areas 
are 7.8 GW and 9.9 GW. Compared with the current 
installation of wind power (as of December 2018), which 
is 3.6 GW, and the 2030 target, which is 10 GW, there is 
much more available wind potential with the highest 
overall quality and lower costs than the grid electricity 
costs.  

4. CONCLUSION 
A new geospatial MCDA method using spatial 

regression with past investment data was proposed and 
implemented to identify Japan’s high-quality onshore 
wind energy potential in 2030. In addition to economic 
costs, other physical, environmental, and social factors 
were incorporated to rank the overall quality of 
potential. There exists far more high-quality onshore 
wind potential in Japan than the 2030 target.  
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Fig 4 Quantity and overall quality of wind energy potential 

cheaper than the grid electricity cost (83.6 USD/kWh) in 
2030 by 10 balancing areas (utilities) 

 
Fig 3 Geographic distribution and its overall quality of 
wind energy potential cheaper than the grid electricity 

cost (83.6 USD/kWh) in 2030 

 
Fig 2 ROC curves of Logistic regression and CAR regression 


