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ABSTRACT 
Over the past two centuries, the research on working 

fluids drove the tremendous progress of organic Rankine 
cycle to convert medium- and low-temperature heat into 
power efficiently. With the increasingly stringent 
requirements on working fluids, the search for 
alternative working fluids is a never-ending task. In the 
present work, a comprehensive review of working fluids 
selection of ORC is presented to summary the current 
research results, find out the issues and guide the future 
developments. The research of working fluid selection is 
divided into three stages according to research method 
firstly. Then, the research progress of each stages is 
summarized. In addition, the research challenges and 
recommendations for further research of working fluids 
selection and even for novel thermodynamic cycle are 
highlighted as well. The results show that for traditional 
ORC, the optimal working fluid could be selected almost 
by key parameters such as critical temperature, acentric 
factor and Jacob number, etc. More importantly, the 
development direction of novel thermodynamic cycle is 
presented. 
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NONMENCLATURE 

Abbreviations  

ORC organic Rankine cycle 

Symbols  

c specific heat capacity 
Ja Jacob number 

r latent heat 
s entropy 
T temperature 
W work 
wf working fluid 
η efficiency 

β 
the slope of working fluid saturated 
liquid line in T-s diagram 

ω acentric factor 
Ф flow coefficient 

ψ loading coefficient 
αV volume expansion coefficient 

ρ density 

Subscripts and superscripts  

Carnot Carnot cycle 
c condensation 
cr critical point 
com component 
e evaporation 
exp expander 
hse heat source 
max maximum 
m arithmetic mean 
net net output 
ORC organic Rankine cycle 
pump working fluid pump 
P pressure 
r reduced by critical point 
1st The first law of thermodynamics 

 

1. INTRODUCTION 
Since the invention of organic Rankine cycle (ORC), 

which has been widely studied in the field of medium- 
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and low-temperature energy utilization [1], the selection 
of working fluids has always been a research hotspot. 
This is mainly because that the actual thermodynamic 
cycle must rely on working fluids to transfer and convert 
energy. However, according Carnot cycle, the upper limit 
thermodynamic cycle efficiency is determined only by 
the temperature of heat sink and heat source [2]. Based 
on the Carnot cycle, the thermophysical properties of 
working fluid in actual ORC are considered. In addition to 
the limitation of the thermophysical properties on the 
efficiency of actual ORC, the working fluid could also 
cause irreversible losses in the actual ORC, such as the 
finite potential difference in the process of energy 
transfer and transformation (including temperature 
difference, pressure difference, concentration 
difference, etc.) and the irreversible losses caused by 
dissipation effects (including friction, heat dissipation, 
leakage, etc.) [2]. Therefore, working fluid is the main 
reason for the huge performance gap between Carnot 
cycle and actual ORC. Naturally, the selection of suitable 
working fluids is one of the basic tasks for the 
development of ORC. 

Many studies were devoted to the selection of 
working fluids of ORC. There are also several articles 
presented a general overview at that time. Chen [3], Bao 
[4], Zhou [5] and Xu [6] presented review researches in 
relation to the selection of working fluids of ORC 
respectively, which were categorized according to cycle 

structure, type of working fluid, operating condition and 
application scenario. These review papers 
comprehensively summarized the research progress at 
that time. And the thermophysical properties of working 
fluid, stability of working fluid, safety, cost and 
environmental aspects are considered as the main 
factors of working fluid selection. 

Actually, in recent years, with the deepening of 
researchers' understanding of the problem, great 
changes have taken place in the selection of working 
fluids from the perspective of research method. As 
shown in Fig 1, the selection of working fluids has gone 
through three stages using trial method, analytical 
method and decoupling method respectively. In this 
paper, the research progress and results of working fluid 
selection in each stages are summarized and analyzed 
comparatively. And the current development issues and 
future directions are also presented. The summary in this 
paper could promote the understanding of working fluid 
selection research from the methodological point of view 
and could also be considered as a research methodology 
guideline for the construction of thermodynamic cycle. 
The full-text is shrunken due to page limitation. 

2. TRIAL METHOD 
The trial method is the original method to be used, 

which relies heavily on the software for calculating the 
thermophysical properties of working fluid, such as EES, 
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Fig 1 Diagram of research methods for working fluid selection 
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REFPROP, Coolprop, etc. According to this method, the 
efficiency of all candidate working fluids should be 
calculated based on the established ORC thermodynamic 
model, and the working fluid with highest efficiency or 
maximum output work would be regarded as the optimal 
working fluid. As more and more candidate working 
fluids are considered, some studies attempt to 
summarize the key thermophysical parameters affecting 
cycle performance by statistical methods. Xu et al. [7] 
presented the relationship between critical 
temperature, heat source temperature and thermal 
efficiency of ORC based on the analysis of 57 working 
fluids. 37 working fluids were compared and analyzed by 
Zhai et al. [8] and the suitable working fluid were 
recommended according the relationship between 
critical temperature, heat source temperature and 
evaporation temperature. The similar conclusions were 

also concluded by Vivian et al. [9] according the 
calculation results from 32 working fluids. Wang et al. 
[10] analyzed 21 working fluids and found the 
relationship between Jacob number (Ja, which is defined 
as the ratio of sensible heat to latent heat in heat transfer 
process of working fluid), critical temperature and 
thermal efficiency. What’s more, the quantitative 
expression between critical temperature and thermal 
efficiency under constant operation conditions was 
proposed, as shown in formula (1). The determination 
coefficient R2=0.9988. The quantitative expression 
between critical temperature, acentric factor, heat 
source temperature and net output work was proposed 
by Zhao et al. [11], as shown in formula (2). The 
determination coefficient R2=0.967548. It is noteworthy 
that the condensation temperature remained 

Table 1 Summary of thermal efficiency equations of ORC 

Authors Year Functions Description 

Liu et al. 
[12]  
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, 
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Based on the Watson formula [22] describing the 
latent heat of vaporization working fluids. n is 

suggested to be 0.375 or 0.38. ηexp=100%., 
ηpump=100%. 

Mikielew
icz et al. 
[13] 
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c

1st

e Carnot e e
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r
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+
 

This formula shows high accuracy for isentropic 

working fluids. ηexp=100%, ηpump=100%. 

Kuo et al. 
[14] 

2011 
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The thermal efficiency of ORC decreases with the 

increase of FOM. ηexp=100%, ηpump=100%. 

Wang et 
al. [15] 
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He et al. 
[16] 
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ηpump=100%. 

Li et al. 
[17] 
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This formula was derived for isentropic working 
fluid using entropy-generation analysis. 
ηpump=100%. 

Javanshir 
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This formula shows high accuracy for isentropic 
working fluids. ηpump=100%. 
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and Chen 
et al. [10, 
21] 
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This formula was deduced based on the cycle 

separation. ηexp=100%, ηpump=100%. 

Xu and 
Su et al. 
[19, 20] 

2018 
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 This formula was deduced based on the graphical 

analysis in T-s graph. ηexp=100%, ηpump=100%. 
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unchanged in this study, so the heat sink temperature 
was not involved in the expression of output work. 

6 2
ORC cr cr4E +0.0025 0.1467T T −=−  −  (1) 

1.135539 0.313906 2.742975
net cr hse0.00215691W T T=     (2) 

In summary, using the method of combining trial 
calculation with inductive fitting, a conclusion has been 
reached that the critical temperature could be regarded 
as the main index and Jacob number, acentric factor 
could be regarded as the auxiliary indexes for working 
fluid selection. When there are fewer candidate working 
fluids and available software for calculating 
thermophysical properties with high accuracy, the trial 
method shows advantages of simple and convenient. 
However, the mechanism of the effect of thermophysical 
properties on cycle performance is not well anatomized 
because the thermodynamic model of ORC is a kind of 
black box model. 

3. ANALYTICAL METHOD 
In view of the desire for mechanism, more and more 

scholars tend to select working fluids using analytical 
method. The three kind of factors affecting the thermal 
efficiency of thermodynamic cycle could be summarized 
as the temperature of heat source and heat sink, the 
thermophysical properties of working fluid and the 
efficiency of components. In this method, the 
temperature of heat source and heat sink are usually 
fixed, and the efficiency of components are usually set to 
100%. Then the relationship expression between the 
thermophysical properties of working fluid and the 
thermal efficiency of thermodynamic cycle could be 
deduced using entropy analysis method, graphical 
analysis method, etc. And the key thermophysical 
parameters affecting the performance of ORC could be 
found in expression. Finally, the optimal working fluid 
could be selected according the key thermophysical 
parameters. 

The thermal efficiency expressions of actual ORC are 
listed in Table 1. From the formulas in the table above, 
we could conclude that the key thermophysical 
parameters of working fluid are latent heat, liquid 
specific heat, Jacob number and the slope of working 
fluid saturated line in T-s diagram. However, no identical 
expression has been obtained by different studies due to 
the difference of heat source and heat sink temperature 
and different hypothetical conditions in each study. 
What’s more, there are even obvious inconsistent 
conclusions. According to the researches from Xu et al. 
[20], the working fluids with high latent and low specific 
heat show better performance. On the contrary, 

Yamamoto et al. [23] proposed that the candidate 
working fluids must have low latent heat, which would 
increase the turbine inlet mass flow rate and give the 
best operating condition. The reason for this 
contradiction is that different thermodynamic processes 
require different working fluids and the hypotheses of 
thermodynamic process are different in these two 
researches. This contradiction cannot be solved by taking 
thermodynamic cycle as the research object. 

4. DECOUPLING METHOD 
By dividing the thermodynamic cycle into 

thermodynamic processes, the selection of working 
fluids for each process is carried out. In this kind of 
research, if relying on the thermodynamic cycle, the 

Table 2 Summary of researches on the effect of 
thermophysical properties on thermodynamic Process 

Authors Year Process Conclusion 

Zheng et 
al [24] 

2013 Heat transfer 
process 

The parameter σ was 
proposed for the 
selection of zeotropic 
working fluid. 

Lio et al. 
[25] 

2016 Expansion 
process 

exp ( , , , , , )f R SP VR wf =     

was derived. 
Thermophysical 
properties of working 
fluid are the key 
parameters affecting 
the efficiency of 
expander. 

Stijepovi
c et al. 
[26] 

2012 Expansion 
process 

The isobaric heat 
capacity, molecular 
weights and 
compressibility factor 
of working fluids were 
regarded as key factors 
affecting the 
performance of 
expansion process 

Burugup
ally et 
al.[27] 

2019 Expansion 
process 

The efficiency of 
expander increases 
with the increase of 
specific heat ratio of 
working fluid. 

Xu et al. 
[28] 

2017 Compression 
process 

The isentropic 
efficiency of 
compression process 
decreases with the 
increment of αV/ρcp of 
different working 
fluids. 
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thermodynamic process that has not been studied will be 
set as the ideal thermodynamic process usually. Besides, 
the thermodynamic process could also be modeled, 
simulated or experimented separately. 

At present, only a few papers focus on the selection 
of working fluid for thermodynamic process. Table 2 
listed the basic information and main conclusions of such 
studies. The results show that the conclusions of 
different studies are quite different for the same 
thermodynamic process, such as expansion process, 
which may due to the different types of expanders 
studied in different researches. Overall, no unified 
criterion of working fluid selection for each 
thermodynamic process has been concluded at present. 
Even so, it is a generally accepted conclusion that the 
selection criteria of working fluids in different 
thermodynamic processes are quite different. This 
prompts us to think about how to apply the optimal 
working fluid to all thermodynamic processes at the 
same time in a thermodynamic cycle? 
 

5. THE KNOWLEDGE GAPS AND DEVELOPMENT 
DIRECTIONS 

From the above literature review, it could be found 
that the key thermophysical parameters affecting the 
cycle performance of traditional ORC were found out by 
using trail method and analytical method. However, a 
more unified quantitative expression of cycle 
performance and thermophysical parameters of working 
fluids needs to be clear, which could accurately reflect 
the degree of influence of different properties. 
Furthermore, it could be attempted to find parameters 
at the molecular level that affect key thermophysical 
properties of working fluid, which will be of great 
significance to the selection and design of working fluids. 

Using decoupling method, more researches are 
needed to clarify the selection criteria for each 
thermodynamic process. The same research is also 
necessary for other thermodynamic cycles, such as heat 
pump cycles, absorption refrigeration cycles, etc. What’s 
more, with the change of research roadmap, the 
development of the new generation of thermodynamic 
cycle is no longer follows the pattern of working fluid 
selection based on the cycle structure, but follows the 
pattern of cycle structure design based on working fluids. 
Working fluid should be considered as a new 
thermodynamic dimension in the construction of 
thermodynamic cycle. A 3D construction method of 
thermodynamic cycle was proposed in reference [29], 

which provides a feasible route to construct a novel 
thermodynamic cycle. 

6. CONCLUSIONS 
The researches on working fluid selection of organic 

Rankine cycle were comprehensive reviewed and 
classified according the research method, that is trial 
method, analytical method and decoupling method. For 
traditional ORC, the optimal working fluid could be 
selected depends on critical temperature, acentric 
factor, latent heat, liquid specific heat, Jacob number 
and the slope of working fluid saturated line in 
temperature-entropy diagram. Based on the review of 
working fluid selection, the congenital defects of 
traditional research could be found and the suggestions 
of research roadmap for efficient thermodynamic cycles 
is given. 
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