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ABSTRACT 
In this paper, monarch butterfly optimization is 

introduced to solve an optimal deployment problem of 
renewable energy sources in distribution systems, 
aiming to minimize annual energy loss and node 
voltage deviation of the system. Solar photovoltaic and 
wind turbines are considered and formulated for a 
benchmark 33-bus distribution system. To demonstrate 
the effectiveness of this technique, obtained 
simulation results are compared with some of the well-
known optimization methods available in literature. 
The comparison shows that the monarch butterfly 
optimization has better solution searching ability for 
real-life engineering optimization problems. 
Additionally, it provides a higher energy loss reduction. 
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1. INTRODUCTION
The Distributed Generation (DG), a concept of

accommodating small and medium-sized power 
generating (especially, renewables) units is one of the 
sustainable alternatives to conventional large power 
plants. The increasing risk to the environment and 
shrinking energy resources have proliferated the 
growth of renewables in distribution systems. The DGs 
have numerous technical and environmental 
advantages if optimally integrated. Some of the 
benefits of optimal DG integration can include 
minimization of power loss [1], annual energy loss [2], 
node voltage deviation, carbon emission [3], and 
various network reinforcement costs [4]. The problem 
of distributed energy resources (DER) allocation, 
considering sites, size, types and numbers, turns out to 
be a complex mixed-integer, non-linear, and non-

convex optimization problem [2]. Therefore, effective 
optimization methods are required to determine the 
global optimal solution to maximize DER integration 
benefits.  

In literature, various analytical and meta-heuristic 
optimization techniques have been suggested and 
investigated. The analytical methods are 
computationally fast but produce indicative results, as 
based on simplified assumptions [5]. Similarly, numerical 
methods are also computationally fast and efficient but 
require more accurate problem formulation. On the 
other hand, population-based meta-heuristic 
optimization techniques are effective to determine the 
optimal solution for complex real-life optimization 
problems. Although, these methods are slow in 
computation, calculation speed is not a concerning 
factor in case of DER planning therefore they are mostly 
preferred.  

To solve the DER integration and operation 
problems, several meta-heuristic optimization methods 
have been introduced. Some of these can include 
genetic algorithm (GA) [6], particle swarm optimization 
(PSO) [7], moth search optimization [8], teaching and 
learning based optimization (TLBO) [9], water cycle 
optimization (WCO) [10], etc.  

Wang et al. [11], introduced a new population-based 
metaheuristic approach in 2015. The method is inspired 
from the migration behavior of monarch butterflies 
found in North America therefore named as monarch 
butterfly optimization (MBO). The method 
outperformed some of the existing optimization 
methods as investigated in [11]. To the best of the 
authors’ knowledge, this method has not been explored 
to solve complex optimal DER integration problems of 
distribution systems.   
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This paper introduces a new optimisation technique 
to solve optimal DER integration problem of 
distribution systems, i.e., MBO, aiming to minimize 
annual energy loss and node voltage deviation of the 
system. A DER integration problem is formulated 
considering wind turbines (WTs) and photovoltaics 
(PVs), and then MBO is applied to solve it. The 
performance of MBO is found to be promising when 
compared with some of the well-known optimisation 
techniques.  

2. PROBLEM FORMULATION 
In this section, an optimization problem is 

formulated for optimal integration of multiple WTs & 
PVs to minimize annual energy loss and node voltage 
deviation of distribution systems simultaneously. A 
penalty function based approach is adopted to 
combine objective functions, expressed as 

min 𝐹 = 𝜑 ∑ (𝑓1 [1 + 𝑓2])24
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Subject to the following constraints: 
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here, Pi, Qi, Pi
der, Pi

D, Vi, δi are denoting the real and 
reactive power injections, DER capacity assumed to be 
deployed, real load demand, voltage magnitude and 
angle at node i respectively. Similarly, Iij, Iij

max and rij 
represent current, maximum current limit and 
resistance of branch connecting nodes i and j. 
Furthermore, N, 𝜑, VminS, Vmin, Vmax, Pder

max and Nder 
represent the number of buses, daily to annual 
transformation factor, minimum and maximum 
specified voltage limits, maximum allowed DER size at a 
node, and number of DERs to be installed in 
distribution systems respectively. 

3. MONARCH BUTTERFLY OPTIMISATION 
The MBO is inspired from the migration behaviors of 

monarch butterflies of North America. The monarch 
butterfly flutter migrates from region-1 to region-2 in 
the month of April and from region-2 to region-1 in 
September. During this process they keep producing 
offspring which replace their parents. The MBO 
technique consists basically of two updating operators, 
migration operator, and butterfly adjustment operator. 
In migration, monarch butterflies follow some set of 
rules [11]: 1) complete monarch flutter lies in both 
regions; 2) offspring are produced in region 1 or 2 only; 
3) the size of monarch flutter remains constant; and 4) 
few monarch butterflies are not upgraded by upgrading 
operators. 

3.1 Migration operators (MO) 
Suppose, the population of monarch flutter remains 

in region-1, i.e., subpopulation-1 (NP1), is determined as 
ceil(pr*NP). Similarly, subpopulation-2 (NP2) can be 
considered for region-2 and calculated as NP-NP1. Here, 
NP and pr are representing the complete monarch 
butterfly population and ration of monarch butterfly in 
region-1. The mathematical representation of the 
migration process can be expressed as 

𝑍𝑥,𝑘
𝑡+1 = 𝑍𝑟1,𝑘

𝑡   (11) 

here, Zx,k
t+1 represents kth element of Zx in generation 

t+1. Similarly, Zr1,k
t represents the kth element of Zr1 for 

the current generation t. r1 is a randomly picked 
individual from subpopulation 1 (NP1). If r ≤ pr, the value 
of Zx,k

t+1 is updated by (11) otherwise (12); where r is 
calculated as 𝑟 = 𝑟𝑎𝑛𝑑 × 𝑝𝑒𝑟𝑖  in which peri is 
migration operator set to 1.2 and rand is a random value 
generated between 0 to 1 [11]. 

𝑍𝑥,𝑘
𝑡+1 = 𝑍𝑟2,𝑘

𝑡    (12) 

where, Zr2,k
t represents the kth element of Zr2 in 

generation t. r2 is a randomly selected individual from 
subpopulation 2 (NP2). 

3.2 Butterfly adjustment operator (BAO) 
In BAO, if rand ≤ pr then butterfly element at yth 

position Zy,k
t+1 is modified as (13) otherwise (14). 

  𝑍𝑦,𝑘
𝑡+1 =  𝑍𝑏𝑒𝑠𝑡,𝑘

𝑡     (13) 

𝑍𝑏𝑒𝑠𝑡,𝑘
𝑡  represents kth element of fittest butterfly found 

in tth generation. 
   𝑍𝑦,𝑘

𝑡+1 = 𝑍𝑟3,𝑘
𝑡      (14) 

𝑍𝑟3,𝑘
𝑡 denotes the kth element of Zr3 where 

r3Є{1,2,.....,NP2}. For this condition, if rand > BAR then it 
is further updated as 

 𝑍𝑦,𝑘
𝑡+1 = 𝑍𝑦,𝑘

𝑡+1 + 𝛼 (𝑑𝑍𝑘 − 0.5)     (15) 
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here, BAR and dZ represent butterfly adjustment rate, 
and walk step size of butterfly y that can be produced 
from Levy flight as 𝑑𝑍 = 𝑙𝑒𝑣𝑦(𝑍𝑦

𝑡 ) . The weighting 

factor α is calculated as 𝛼 = 𝑊𝑚𝑎𝑥 𝑡2⁄  where Wmax is 
the maximum walk step.  

4. OPTIMAL INTEGRATION OF DER USING MBO 
In this section, the application of MBO techniques is 

explained. The decision variables of the problem are 
DER sites and sizes. The number of DGs NDG is assumed 
to be deployed in a system then the length of an 
individual will be 2NDG. The structure of monarch 
butterfly used in this work, containing all optimization 
variables, is shown in Fig. 1. 

 
Fig. 1. Structure of an individual moth 

5. SIMULATION AND RESULTS 

5.1 Validation of MBO for power loss minimization  
To demonstrate and validate the ability of MBO to 

solve dispatchable DG integration problems, an already 
existing simple power loss minimization problem is 
solved for a benchmark 33-bus test distribution system. 
This is a 12.66 kV radial test distribution network with 
total real and reactive power demands of 3.715MW, 
and 2.300 MVAr respectively [12]. For validation, a 
comparison of simulation results obtained by MBO and 
some of the existing optimization methods is presented 
in Table I. The comparison shows that MBO has ability 
to provide promising results as compared to TLBO, 
Quasi-Oppositional TLBO (QOTLBO), GA/PSO, 
analytical, improved analytical (IA), exhaustive load 
flow (ELF) methods. 

5.2 MBO for proposed DG integration problem 
After establishing the MBO for power loss 

minimization, it is applied to solve the proposed 
renewable based DG integration problem for the same 
33-bus distribution system. The information of hourly 
wind speed, solar irradiation and load demand are 
referred from [13, 14]. It is noticed that distribution 
systems are found to be in a small geographical area 
therefore the availability of solar irradiation and wind 
speed are assumed to be equally distributed across all 
the system buses. The uncertainty of generation and 
load has not been considered in this work instead a 
deterministic framework is adopted.  

To investigate the effect of each renewable 
technology and their operation, following cases are 
formulated and solved by using MBO: Case-1 base case 
(no DG); Case-2 optimal integration of WTs only, 
operating at unity power factor (OPF); Case-3 optimal 
mixed integration of WTs and PV, operating at unity 
power factor (UPF); and Case-4: optimal mixed 
integration of WTs operating at lagging power factor 
(LPF) and PV operating at UPF. 

TABLE I Comparison of MBO and some other existing 
optimization techniques 

Method Optimal DG Nodes (Sizes in MW) 
Losses 
(MW) 

TLBO [9] 30(1.186), 28( 1.191), 12(1.183) 0.1246 
GA/PSO [6] 32(1.200), 16(0.863), 11(0.925) 0.1034 
QOTLBO [9] 30(1.199), 26(1.187), 13(1.083) 0.1034 
IA [15] 30(0.720), 12(0.900), 06(0.900) 0.0811 
Analytical [16] 25(0.770), 16(0.530), 06(1.730) 0.0795 
ELF [15] 30(0.900), 24(0.900), 13(0.900) 0.0743 
MBO 30(1.019), 25(0.694), 13(0.862) 0.0729 

Now, the MBO technique presented in Section 3 and 
4 is applied to determine optimal sites, sizes and mix of 
renewables, for the above designed cases. The 
comparison of simulation results obtained for these 
cases is presented in Table II. The table presents sites 
and sizes of different DGs along with annual energy loss, 
DG penetration and value of minimum node voltage of 
the system, observed in considered time duration. 

Table II Simulation results for optimal allocations of different 
DGs, DG penetration and annual energy loss. 

Case 
DG type, site 
(sizes in kW) 

DG 
Penetration 

(%) 

Annual 
Energy 

Loss 
(MWh) 

Loss 
Reduction 

(%) 

Case-1 - - 3493.27 00.00 

Case-2 
WT@16(1250) 
WT@29(1250) 
WT@32(0850) 

47.92 1714 50.93 

Case-3 
PV@11(1461.4) 
WT@17(0500) 
WT@31(1500) 

49.51 1616 53.74 

Case-4 
WT@07(0500) 
WT@15(0500) 
PV@32(896.4) 

27.13 1144 67.25 

From these cases, it is observed that the integration 
of DERs significantly reduced the annual energy loss of 
the system. The mixed power generation of PV and WTs, 
in Case-3, provides higher loss reduction as compared to 
Case-2. It could be due to the fact that wind power 
generation is high during light load hours during the 
night whereas peak demand occurs in the day time. The 
period of PV power generation in Case-3 almost matches 
with the peak load hours of the demand. 
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In Cases-2 and 3, the DGs are operated at UPF 
therefore reactive power support from the PV and WTs 
have not been provided. In Case-4, the optimal siting 
and sizing of two WTs operating at 0.85 LPF and one PV 
operating at UPF are determined. The simulation 
results show that the consideration of VAr support 
from WTs completely changed sites and sizes of 
renewables, as compared to Case-3. This is motivating 
the VAr support from DGs that provide highest loss 
reduction, even with low DG penetration as compared 
to case-3. The mean node voltage profiles of these 
cases are presented in Fig. 2 which shows that mean 
node voltage profiles of 24-hours are near to unity.         

These case studies show that MBO generates 
effective and encouraging optimal solution when 
applied to dispatchable and non-dispatchable DG 
integration in distribution systems. The method 
provides a promising solution for utilities to ameliorate 
the power system performance in terms of power loss 
reduction and maintaining voltage profile.  

 
Fig. 2 Mean node voltages of the system for all cases 

6. CONCLUSIONS 
The article introduces a new optimization 

technique, i.e., MBO, to solve the DG integration 
problem of distribution systems. The technique 
effectively solves the optimal deployment of 
dispatchable DGs for power loss minimization, and 
renewable-based DGs for annual energy minimization, 
in a 33-bus system. The performance of this method is 
also compared with some of the existing method which 
shows that MBO has a promising solution searching 
ability. The methodology shows some better inherent 
properties to seek and explore the global optimal 
solution for complex real-life engineering optimization 
problems.  

In future, the improved MBO can be applied to 
solve renewable integration problems of distribution 
problems by considering generation and load demand 
uncertainties.  
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