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ABSTRACT 
Numerical and computational analyses of interface 

position during inward solidification of composite phase 
change materials (PCM) in spherical container were 
explored in this study. The applications of methods such 
as perturbation, strained coordinates and (improved) 
quasi-steady solution on spherical inward solidification 
were investigated and compared with the results of 
numerical simulation. The solidification positions of 
porous composite PCM with different porosities solved 
by strained coordinates and (improved) quasi-steady 
methods were compared when the Stefan number was 
0.1. The complete solidification time was found to be 
rapidly shortened as the porosity decreased. 
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NONMENCLATURE 

Abbreviations 

PCM phase change material 
MF metal foam 

Symbols 

T temperature, K 
Ste Stefan number (=cp(Tf-T0)/L) 
cp specific heat (J·kg-1·K-1) 
L latent heat of solidification (J/kg) 
R radial direction of sphere (m) 
p dimensionless constant 
r normalized radial position 

Greek symbols 

α thermal diffusivity (m2/s) 
λ thermal conductivity (W/(K·m)) 
ρ density (kg/m2) 
δ normalized solidification position 
τ normalized time 
Ψ independent variable 
ε porosity of metal foam 

Subscripts 

e effective 
f freezing 
s quasi-steady approximation 
m improved quasi-steady analysis 

1. INTRODUCTION
Energy storage technology contributes to sufficient

utilization and balance of energy supply and demand [1]. 
A spherical unit in the ice thermal storage system 
belongs to a general class of moving phase-change 
boundary problems that were first introduced by Josef 
Stefan around 1890. For more than 100 years, the 
transient phase change problems in spherical containers 
have been studied by numerical analysis, simulation and 
experiments. 

The numerical solutions of the inward solidification 
in a sphere or cylinder were obtained by Tao [2] in 
graphical form, with the thermal conductivity and heat 
capacity of solid phase assumed to be constants. Pedroso 
and Domoto presented the perturbation solutions that 
was valid for outward and partial inward solidification in 
a sphere [3], which was improved and resolved by the 
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strained coordinates method proposed in the latter 
study [4]. Riley et al. [5] presented an analytical study on 
the freezing of a sphere/cylinder by a two-region analysis 
to accommodate the point of singularity near the center, 
which compared well with the numerical solutions for 
small Stefan numbers. Shih et al. [6] and Hill et al. [7] 
developed a numerical model for dealing with the 
freezing processes for saturated liquid in spherical 
containers with constant heat transfer coefficient and 
radiation at the container surface. The application of the 
perturbation expansions method in phase change heat 
transfer was sufficiently reviewed by Aziz et al. [8], 
including the solutions of 1D, 2D and 3D problems in 
Cartesian, cylindrical and spherical coordinates. Sui et al. 
[9] proposed an improved quasi-steady solution based 
on the ratio of the heat flux at phase interface to that at 
spherical surface, whose error was one tenth of the error 
of the quasi-steady solution. 

Ismail et al. [10] presented a numerical solution for 
the solidification of water in a spherical enclosure under 
convective boundary conditions. They studied the effects 
of parameters including initial PCM temperature, cooling 
temperature, wall material and the diameter of the 
sphere on complete solidification time and solidification 
rate. Bilir et al. [11] numerically investigated the 
solidification of PCM in a cylindrical/spherical container 
under the third boundary conditions, whose initial 
temperature was not the solidification temperature. The 
correlations expressing the dimensionless complete 
freezing time in terms of Stefan Number, Biot Number 
and Superheat Parameter were derived. Eames et al. [12] 
established an experimental system to test the melting 
and freezing processes of different sphere diameters and 
heat transfer fluid temperatures. They derived semi-
empirical equations to predict the mass fraction at any 
time. Shi et al. [13] experimentally determined the role 
of metal foam on the solidification process of water in ice 
ball, indicating that the metal foam can enhance the heat 
transfer during the phase change process. 

Previous literatures showed that analytical solutions 
for inward solidification of metal-foam composite PCM 
were rarely studied. This paper therefore focused on 
comparison of numerical solutions with several 
analytical solutions. The solidification processes of PCM 
embedded in metal foam with different porosities were 
studied by available analytical models. 

2. ANALYTICAL MODEL 
Consider a one-dimensional spherical form of radius 

R0 shown in Fig. 1. The temperature of the liquid in the 
sphere was assumed originally at the freezing 

temperature Tf. Suddenly, at the time t=0, the 
temperature at the fixed wall R=R0 dropped to a lower 
temperature T0 and kept constant. Then the liquid in the 
sphere started to freeze inwardly. Assuming that all 
thermophysical properties were uniform and constant, 
the governing equation within the solid phase was the 
transient heat conduction equation as follows: 

α
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The boundary conditions can be written as: 
= 0T T  at = 0R R ; = fT T  at = fR R       (2) 

Energy balance in the solid-liquid interface was described 
as: 
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The initial condition was specified as: 
= 0fR R  at = 0t               (4) 

Define the dimensionless physical quantities, Ste, radial 
position, r, solidification position, δ, and time, τ, as: 
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According to the strained coordinates method 
proposed by Pedroso and Domoto [4], the normalized 
solidification position and freezing time can be yielded in 
terms of a new independent variable Ψ: 
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where τ*=τ·Ste for the convenience of derivation. In 
order to make full use of the first three terms of the 
above equations, the Shanks transformation [14] was 

 
Fig 1 The Diagram of physical model 
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separately applied to extend the application range of the 
solution. 

As the solidification process going on, the frozen 
region must be cooled to lower temperature than the 
freezing point, so that the liquid surrounded by the solid 
phase can be continued freezing. By neglecting the 
conducting heat loss in the solid phase, the quasi-steady 
equations can be solved to approximate the exact 
solution that was unavailable for sphere.  

Neglecting the transient term on the left side of the 
governing Eq.(1), the quasi-steady governing equation 
can be obtained as follow: 

∂ ∂  = ∂ ∂ 
2 0

T
R

R R
              (8) 

Combined with the boundary and initial conditions, Eqs. 
(2-4), the solidification position of the quasi-steady 
approximation can be derived as: 

δ δ τ− + = ⋅
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In order to improve the quasi-steady approximation, an 
additional term was introduced to approach the effect of 
undercooling in the frozen region, which was the heat 
flux ratio defined by: 
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where p was determined by the Neumann’s solution of 
solidification in a plate, when it was also assumed valid 
for the sphere: 

( ) ( )π =2exp erfp p p Ste           (11) 

Considering the imposed condition Eq. (10) and the 
same boundary conditions, the Eq. (8) can be solved to 
obtain the temperature distribution um. Substitute um 
into Eq. (3) and integrate Eq. (3) with the initial condition, 
Eq. (4), to obtain the solidification position of improved 
quasi-steady analysis: 
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The p value for the spherical case was actually 
different from that for the plate as defined in Eq. (11), 
which can be transformed by [9]: 

( )= + =' 3 3 1.577
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p
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The metal foam was uniformly saturated in a 
spherical filled with pure water to generate a composite 
phase-change spherical. Assuming local thermal 
equilibrium at the interface of solid and liquid phases, the 
effective physical parameters of composite PCM were 
determined by: 

( )ρ ρ ε ρ ε= − +1e MF PCM            (14) 

( )ε ε= − +, , ,1p e p MF p PCMc c c           (15) 
ελ λ λ ε−

= +
1
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where ρ, cp and λ defined the density, specific heat and 
thermal conductivity, ε represented the porosity of metal 
foam. To obtain the solidification process of composite 
PCM in a sphere, the effective thermal diffusivity αe was 
transformed to the thermal diffusivity of pure water 
according to: 
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The dimensionless parameters τe and pe can now be 
yielded: 
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Substituting the effective parameters determined by Eqs. 
(18-19) into the previous solutions to solidification of 
pure water in a sphere, the solidification position of 
composite-PCM in a sphere can be solved. 

3. RESULTS AND DISCUSSION 
Fig. 2 demonstrated the solutions of dimensionless 

solidification position obtained by four analytical 
methods (lines) and a numerical simulation (points) [2, 3, 
4, 9] as a function of dimensionless time. Among them, 
the perturbation solution was obviously divergent when 
the solidification was about to be completed. 

It can be seen that as solidification progressing, the 
error of the quasi-steady solution gradually increased. 
The complete solidification time was 7.5% less than the 
strain coordinate solution. The error of complete 
solidification time between the improved quasi-steady 
solution and the strain coordinate solution was reduced 
to 1.7%, in a reasonable range to be accepted. 

Fig. 3 depicted the solidification positions of 
composite PCM with different porosities obtained by the 
strained coordinates and (improved) quasi-steady 
methods. It can be observed that the complete 
solidification time with a porosity of 0.98 was reduced by 
half compared to that of the pure PCM. The complete 
solidification time with a porosity of 0.9 was only 23% of 
that for the pure PCM. The embedded metal foam 
increased the thermal conductivity of the composite 
PCM and accelerated the heat transfer into the center. 
Besides, as Fig. 3 shown, as the porosity decreased, the 
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improved quasi-steady solution got closer to the quasi-
steady solution, and its error compared with the strain 
coordinate solution gradually increased. 

4. CONCLUSION 
In the present work, the analytical solutions 

obtained by perturbation, strained coordinates and 
(improved) quasi-steady methods were compared and 
discussed. The four analytical models were validated by 
comparing with numerical results in literature. The 
analytical solutions to the solidification in pure PCM were 
extended to composite PCM (water saturating metal 
foam) and the effect of foam porosity on the 
solidification process was also explored. The results 
showed that the complete solidification time was greatly 
shortened as the porosity reduced from 1.0 to 0.9. 
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Fig 2 Comparison of the spherical inward solidification 
positions solved by different methods [2,3,4,9] when 

Ste=0.1 

 
Fig 3 Comparison of solidification position solutions of 
composite PCM with different porosities when Ste=0.1 


