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ABSTRACT 
 Building stock is a key determinant in building 

energy modelling and policy analysis. However, official 
statistics on total floor area of urban residential stock in 
China only exist up to 2006. Previous studies estimating 
Chinese urban residential stock size and energy use 
made various questionable methodological assumptions 
and only produced deterministic results. This paper 
presents a Bayesian approach to characterise the stock 
turnover dynamics and estimate stock size uncertainties. 
Firstly, a probabilistic dynamic model is developed to 
describe the building aging and demolition process 
governed by a hazard function specified by a parametric 
survival model. Secondly, with each of five candidate 
parametric survival models, the dynamic model is 
simulated through Markov Chain Monte Carlo (MCMC) 
to obtain posterior distributions of model-specific 
parameters, estimate marginal likelihood, and make 
predictions on stock size. Finally, Bayesian Model 
Averaging (BMA) is applied to create a model ensemble 
that combines the model-specific posterior predictive 
distributions of the stock evolution pathway in 
proportion to posterior model probabilities. This 
Bayesian modelling framework, and its results in the 
form of probability distributions of annual total stock and 
age-specific substocks, can provide a solid basis for 
further modelling and analysis of policy trade-offs across 
embodied-versus-operational energy consumption and 
carbon emissions of buildings in the context of sector-
wide transition towards decarbonising buildings.        
 
Keywords: building stock, lifetime distribution, Bayesian 
Model Averaging, Markov Chain Monte Carlo, embodied 
energy, operational energy  

 

1. INTRODUCTION 
China is the world's largest building energy 

consumer. In 2017, total energy consumption by 
buildings in China was estimated to reach 963 million 
tonnes of coal equivalent (Mtoe) [1]. Of this total 
amount, urban residential buildings accounted for more 
than one third. Whilst the size of the urban residential 
stock is critical to the evaluation of stock-level energy 
consumption, official statistics only exist up to 2006 and 
this results in an unknown growth trajectory of the stock 
from 2007 onwards. This necessitates estimating how 
the urban residential stock has been developing to reach 
its current status. The stock evolution and expansion are 
characterised by a turnover process driven by the 
dynamic interplay between new construction, meeting 
incremental demand growth as a result of economic 
growth and rising living standards, existing buildings 
remaining in use but undergoing an ageing process, and 
old buildings, which are eventually demolished. As 
Chinese urban buildings are generally short-lived [2,3], 
building lifetime is an important factor underlying the 
dynamics of stock turnover. The short lifetime suggests a 
high turnover rate, the complexity and uncertainty of 
which have to be understood when estimating total 
stock and associated energy and carbon impacts. 

A review by Zhou et al. [4] identified three main 
methodological concerns associated with most previous 
models estimating Chinese building stock: (i) arbitrary 
choice of mean and standard deviation parameters of a 
normal distribution representing building lifetime 
distribution; (ii) ambiguity associated with existing 
building stock size and age profile in the initial year of 
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modelling; and (iii) use of per capita floor area data 
leading to inflated estimates. Whilst Cai et al. [3] and 
Zhou et al. [4] partially addressed these issues by 
calibrating building lifetime distribution parameters 
using statistics on floor area, fundamentally they took a 
frequentist approach and produced single point 
estimates of distribution parameters leading to a single 
profile of building lifetime without characterisation of 
uncertainty. In this context, model parameters are 
treated as being fixed. And the calibration is conditional 
upon the model structure as given, thereby neglecting 
the model uncertainty. 

In contrast, a Bayesian approach, adopted by this 
study, treats parameters as random variables and 
derives posterior distributions of parameters by taking 
account of both prior knowledge about parameter values 
and the likelihood of observing empirical data given 
certain parameter values. For a given model, this 
presents a full picture of the likely parameter space, thus 
enabling a good understanding of the global shape of the 
distribution. Such a distribution allows parameter 
uncertainties to be propagated through to emergent 
behaviours of model outputs. Moreover, a Bayesian 
approach allows the model uncertainty to be estimated. 
Through Bayesian Model Averaging (BMA), predictions 
made by individual models are combined in proportion 
to posterior model probabilities. 

In particular, from a policy-making perspective, a 
probabilistic model offers the ability to generate 
probability distributions over outcomes of policy 
scenarios. This is important in the context of 
decarbonising the generally short-lived Chinese 
buildings, where the operational and embodied energy is 
likely to create a strategic trade-off. Taking a Bayesian 
approach, a probabilistic model incorporating building 
stock turnover, energy and carbon will enable future 
research investigating the probability that one policy, 
e.g., extending building lifetime to avoid embodied 
energy, as compared to another policy, e.g. accelerating 
stringency of new building design standards, would yield 
a more favourable outcome of stock-level 
decarbonisation. This is the overarching objective that 
motivates this study as an integral part of future research 
involving a fully-fledged building energy model. 

Based on the above considerations, this study 
applies BMA to develop a probabilistic dynamic model to 
predict Chinese urban residential stock for the recent 
historical period of 2006 to 2017. The rest of this paper 
is organised as follows. Section 2 develops the dynamic 
model for stock turnover and explains the concepts and 

implementation of BMA. Section 3 presents key results, 
including posterior model probabilities and posterior 
predictive distribution of building stock, and discusses 
further model applications and policy implications. 
Section 4 summarises the paper. 

2. METHODOLOGY  

2.1 Building stock turnover model 

Estimating total building stock size requires 
understanding and modelling the stock turnover, which 
is characterised by the stock-level dynamics of 
construction of new buildings as inflow into the stock and 
demolition of old buildings as outflows from the stock. 
By the end of a year t, the total volume of demolition is 
the sum of all existing buildings constructed in previous 
years that have reached the end of their lifetimes in year 
t. The building stock is composed of new buildings 
constructed in year t and those buildings which were 
previously constructed but have not reached the end of 
their lifetimes.  

Building lifetime is critical to the turn-over dynamics. 
Despite design lifetime required by building design 
regulations, often there is a lack of authoritative 
statistics relating to actual building lifetime data, 
particularly in developing countries. At a city or even 
country level, given the huge volume of buildings and 
significant heterogeneity in terms of their physical 
characteristics and socio-economic contexts, it is 
necessary to consider the uncertainties associated with 
building lifetime. It is unrealistic to assume that a cohort 
of buildings, i.e. those constructed in a given year, would 
be in service for exactly the same period and then 
demolished simultaneously.  

This paper proposes to apply the concept of survival 
analysis [5]. It uses the probability density function (PDF) 
of a parametric survival model to approximate the likely 
lifetime distribution profile of a cohort of buildings, so as 
to recognise and represent the uncertainties associated 
with factors collectively influencing lifetime of buildings. 
Thus, in a given year, the proportion of demolished 
buildings in this cohort of buildings is modelled based on 
a hazard function. Conceptually, the hazard function 
represents the conditional probability that a building will 
expire in year t, provided that it has successfully survived 
to year t-1. Mathematically, the hazard function is the 
ratio of the lifetime PDF to the complement of lifetime 
cumulative distribution function (CDF). 

Applying the above concept, the total stock in year t 
consists of a series of substocks of different ages: 
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𝑆𝑡𝑜𝑐𝑘𝑡 = ෍ 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑡[𝑡 − 𝑗]𝑡
𝑗=𝑡0 ൫1൯ 

 
Where 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘௧[𝑡 − 𝑗]  represents buildings 

surviving in year t that are (t-j) years old. For new 
buildings constructed in year t, they are 0 years old and 
therefore denoted by 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘௧[0].  

The aging process undergone by any cohort of 
buildings is accompanied with annual demolition 
determined by age-specific hazard rates, H(age). 
Therefore, the annual total demolition in year t is the 
sum of age-specific demolition of substocks at all ages. 𝐷𝑒𝑚𝑜𝑙𝑖𝑡𝑖𝑜𝑛𝑡 = ෍ 𝐻(𝑡 − 𝑗)𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑡[𝑡 − 𝑗]𝑡

𝑗=𝑡0 ൫2൯ 

 
For a (t-j)-year-old substock in year t, its volume is 

determined by the aging process that it has undergone 
since it was constructed in year j.  

 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑡[𝑡 − 𝑗] = ቎ෑ൫1 − 𝐻(𝑘)൯𝑡−𝑗
𝑘=0 ቏ 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑗[0] ൫3൯ 

 
Therefore, equation (1) can be re-written as: 

 𝑆𝑡𝑜𝑐𝑘𝑡 = ෍ 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑡[𝑡 − 𝑗]𝑡
𝑗=𝑡0  

= ෍ ቐ቎ෑ൫1 − 𝐻(𝑘)൯𝑡−𝑗
𝑘=0 ቏ 𝑠𝑢𝑏𝑠𝑡𝑜𝑐𝑘𝑗[0]ቑ𝑡

𝑗=𝑡0 ൫4൯ 

 
In above equation (4), the age-specific hazard rate 

H(k) is determined by the parametric survival model 
chosen. Depending upon the specification, the hazard 
function of a survival model may or may not have a 
closed form expression. 

 

2.2 Bayesian modelling 

2.2.1 Statistical model 

As described by equation (4), the deterministic 
component of the overall statistical model is the total 
building stock as the function of unknown parameters 𝜃 
of a chosen parametric survival model, e.g. Weibull 
distribution, and the known annual new cohort of 
buildings constructed over the historical period. This can 
be denoted by a function 𝑓(𝜃, 𝑡) . The probabilistic 
component of the model is represented by an error term 

𝜀௧ , which is assumed to be normally distributed with 
mean zero and unknown variance 𝜎ଶ , i.e. 𝜀௧ ~ 𝑁(0, 𝜎ଶ) . 𝑓(𝜃, 𝑡)  describes the expectation of 
modelled building stock. Therefore, in the Bayesian 
framework, the total stock can be described by the 
overall probabilistic model as follows: 
 𝑆𝑡𝑜𝑐𝑘𝑡 = 𝑓(𝜃, 𝑡) +  𝜀𝑡 ൫5൯ 
 
2.2.2 Bayesian model inference 

In the context of the statistical model, let D represent 
empirically observed data of total stock 𝑦, and annual 
new buildings 𝑥, for the period of 1978 to 2006, i.e. 𝐷 =ሼ(𝑥௜, 𝑦௜), 𝑖 = 1978,1979, … ,2006ሽ. According to Bayes’ 
theorem, the posterior probability density 𝑝(𝜃|𝐷) , 
given the data D, is calculated as follows: 

 𝑝(𝜃|𝐷) = 𝑝(𝐷|𝜃)𝑝(𝜃)𝑝(𝐷) = 𝑝(𝐷|𝜃)𝑝(𝜃)׬ 𝑝(𝐷|𝜃)𝑝(𝜃)𝑑𝜃 ൫6൯ 

 
where 𝑝(𝜃)  is the prior distribution of 𝜃 , 

representing subjective prior knowledge about 𝜃 . 𝑝(𝐷|𝜃) is the likelihood function, which can be viewed 
as a function of 𝜃 given the empirically observed data D 
which is considered fixed. It represents the likelihood 
that the given set of empirically observed data D is 
explained by the model with possible parameter values. 𝑝(𝐷) is the marginal likelihood, which is an integration 
of 𝑝(𝐷|𝜃) over all possible values of 𝜃 across its space 
and therefore is not a function of 𝜃, but a constant. This 
proportionality constant plays the role of normalizing the 
posterior density to ensure it integrates to 1. 𝑝(𝐷) is 
also known as model evidence, because it provides 
evidence for a candidate model, which is critical in 
selecting and averaging models as discussed later.  

The posterior distribution 𝑝(𝜃|𝐷)  fully describes 
the uncertainty associated with the parameters. 
Essentially it updates the prior knowledge about the 
parameters in light of the empirical data. Generally, it is 
difficult or not possible to analytically express the 
posterior distribution. The solution is to instead simulate 
sample draws from the posterior distribution, such that 
the values of these samples are distributed 
approximately according to the posterior distribution of 
the parameters of interest. The samples enable 
calculation of point estimates of the parameters, such as 
mean, median, or mode. More importantly, the samples 
of parameters enable drawing samples from predictive 
distributions associated with model outputs, e.g. the 
annual total stock as the high-level emergent behaviour 
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of the dynamic building stock model, thus facilitating 
policy scenario analysis. Methodologically, this is realised 
using Markov chain Monte Carlo (MCMC) algorithm. 
 
2.2.3 Posterior predictive distribution 

With 𝑝(𝜃|𝐷), it is possible to make inferences about 
the total stock for a given year during the period of 2007 
to 2017, an unknown observable denoted as 𝑦෤ , given 
the known annual new buildings for the same year, 
denoted as 𝑥∗ . This leads to the posterior predictive 
distribution of 𝑦෤: 

 p(𝑦෤|𝑥∗, 𝐷) = න 𝑝(𝑦෤|𝑥∗, 𝜃)𝑝(𝜃|𝐷)𝑑𝜃 ൫7൯ 

 
This equation suggests that the posterior predictive 

distribution is derived by marginalising the likelihood 
function 𝑝(𝑦෤|𝑥∗, 𝜃) over the entire set of parameters, 
with each point in the space of parameters weighted 
according to its posterior probability given the 
empirically observed data. 

 
2.2.4 Bayesian model averaging (BMA) 

The above posterior predictive distribution is 
conditional upon a choice of model M, i.e. a building 
stock model employing a particular parametric survival 
model, e.g. Weibull distribution. The equation can be 
written more explicitly as: 

  p(𝑦෤|𝑥∗, 𝑀, 𝐷) = න 𝑝(𝑦෤|𝑥∗, 𝜃, 𝑀)𝑝(𝜃|𝐷, 𝑀)𝑑𝜃 ൫8൯ 

 
There are multiple choices of parametric survival 

function, each of which may characterise the dynamics 
of building stock turnover. Candidates include Weibull, 
Lognormal, Gamma, etc. Let 𝑀௞  denote a building stock 
turnover model using a plausible survival function k 
specified by parameter vector 𝜃௞, and let M = {M1, M2, 
…., Mk} denote the model space under consideration. 
This creates a model ensemble, which, when making 
predictions, takes into account the uncertainties 
associated with not only model-specific parameters but 
also the models per se. Now, the posterior predictive 
distribution of total building stock for the period of 2007 
to 2017, 𝑦෤, is calculated as: 

 𝑝(𝑦෤|𝑥∗, 𝐷) = ෍ 𝑝(𝑦෤|𝑥∗, 𝑀௞, 𝐷)𝑝(𝑀௞|𝐷)௄
௞ୀଵ ൫9൯ 

 

Where 𝑝(𝑦෤|𝑥∗, 𝑀௞, 𝐷)  is the posterior predictive 
distribution under model Mk given data D, and 𝑝(𝑀௞|𝐷) 
is the posterior model probability (PMP), which is also 
referred to as model weight. Hence, the posterior 
distribution of 𝑦෤  predicted by the model ensemble, 𝑝(𝑦෤|𝑥∗, 𝐷) , is effectively the average of the posterior 
predictive distribution under each candidate model in 
the model space, weighted by its PMP. 

The PMP of model Mk can be interpreted as the 
probability of model Mk being the true model predicting 𝑦෤, given the observed data D, thus reflecting the extent 
to which Mk fits the observations as compared to other 
candidate models in the model space. PMP is given by: 

 𝑝(𝑀௞|𝐷) = 𝑝(𝐷|𝑀௞)𝑝(𝑀௞)∑ 𝑝൫𝐷ห𝑀௝൯𝑝൫𝑀௝൯௄௝ୀଵ ൫10൯ 

 
Where 𝑝(𝑀௞) is the prior probability of model Mk 

being the true model, allowing the existing prior 
knowledge about the plausibility of model Mk to be 
specified explicitly, and 𝑝(𝐷|𝑀௞)  is the marginal 
likelihood (or model evidence) of model Mk, which is 
given by: 

 𝑝(𝐷|𝑀௞) = න 𝑝(𝐷|𝜃௞, 𝑀௞)𝑝(𝜃௞|𝑀௞)d𝜃௞ ൫11൯ 

  
Where 𝑝(𝐷|𝜃௞, 𝑀௞) is the likelihood of model Mk 

given observed data D, and 𝑝(𝜃௞|𝑀௞)  is the prior 
probability density of the parameters 𝜃௞ under model 
Mk. In fact, 𝑝(𝐷|𝑀௞) is the denominator in the above 
equation (6) for calculating the posterior probability 
density of parameters 𝜃௞  under model Mk, as given by: 

 𝑝(𝜃௞|𝐷, 𝑀௞) = 𝑝(𝐷|𝜃௞, 𝑀௞)𝑝(𝜃௞|𝑀௞)׬ 𝑝(𝐷|𝜃௞, 𝑀௞)𝑝(𝜃௞|𝑀௞)d𝜃௞=  𝑝(𝐷|𝜃௞, 𝑀௞)𝑝(𝜃௞|𝑀௞)𝑝(𝐷|𝑀௞) ൫12൯ 

 
Compared with equation (6), the above equation 

(12) explicitly applies subscript k to reflect that both the 
priors of model-specific parameters 𝜃௞  and the 
likelihood function of the observed data D are 
conditional on the particular model Mk in the model 
space. 

Based on the above, the posterior mean of 𝑦෤ , as 
predicted by the model ensemble, can be calculated as 
follows: 
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𝐸[𝑦෤|𝑥∗, 𝐷] = ෍ 𝐸[𝑦෤|𝑥∗, 𝑀௞, 𝐷]𝑝(𝑀௞|𝐷)௄
௞ୀଵ ൫13൯ 

 
Clearly the model ensemble prediction is essentially 

the average of individual predictions weighted by the 
likelihood that an individual candidate model is true 
given the observed data. BMA model ensemble leads to 
a more spread posterior distribution of y than an 
individual candidate model does. This avoids the 
situation where inferences made based on an individual 
candidate model are overstated and decision-making 
based on predictions is more risky than expected [6]. 

 
2.2.5 Model space 

In general, a range of parametric survival distribution 
functions are available to describe the survival process in 
various fields [5]. However, literature on survival analysis 
or lifetime data analysis on buildings is limited. A survey 
on buildings in the Netherlands found that empirical 
survival probabilities of buildings were well 
approximated by Weibull distribution [7]. Miatto et al. 
[8] tested various PDFs and found that the lognormal 

distribution offered the best fit to lifespans of buildings 
in Nagoya and Wakayama, Japan, where buildings were 
short-lived, with average lifespans shorter than 30 years. 
Zhou et al [4] applied the Weibull distribution to 
approximate lifetime uncertainties of Chinese urban 
residential buildings. From an economic perspective, 
buildings can be regarded as a type of capital asset, 
hence building stock can be regarded as capital stock [7]. 
Hence, a range of PDFs that have been used as a proxy 
for service lives and retirement/discard patterns of 
capital stocks may be applied to buildings, such as log-
normal, Weibull, Gamma, and so on [7,9,10]. 

In this paper, the distribution functions used for 
approximating the lifetime distribution of Chinese urban 
residential buildings are Weibull, Lognormal, Loglogistic, 
Gamma and Gumbel distributions. Each distribution 
characterises the turnover dynamics of the building 
stock, thereby representing a candidate model 𝑀௞  in 
the model space M. The PDFs of these distributions are 
given in Table 1. Specifying the PDF of a distribution 
allows the CDF, survival function and hazard function of 
the distribution to be ascertained. 

 
 

Table 1: Candidate survival distribution functions 

Model Probability density function Parameters Priors 

Weibull 𝑓(𝑥) = ቆ𝛼𝑥ఈିଵ𝜆ఈ ቇ 𝑒(ିቀ௫ఒቁഀ) Shape α > 0 
Scale λ > 0 

α ∼ uniform(1,10) λ ∼ uniform(1,100) 

Lognormal 
𝑓(𝑥) = 1𝑥√2𝜋𝜎′ 𝑒ିଵଶ൤௟௡௫ିఓᇲఙᇲ ൨మ

 𝜇′ = 𝑙𝑛 ൤ 𝜇2ඥ𝜎2+𝜇2൨ ,  𝜎′ = ටln ൤1 + ቀ𝜎𝜇ቁ2൨ 

Mean μ > 0 
Standard deviation σ > 0 

μ ∼ uniform(1,100) σ ∼ uniform(1,100) 

Loglogistic 𝑓(𝑥) = 𝑒୪୬(௫)ିఓఙ𝜎𝑥(1 + 𝑒୪୬(௫)ିఓఙ )ଶ Scale μ > 0 
Shape σ > 0 

μ ∼ uniform(1,100) σ ∼ uniform(1,100) 

Gamma 𝑓(𝑥) = 1𝜆Γ(𝛼) (𝑥𝜆)ఈିଵ𝑒ି௫ఒ Scale λ > 0 
Shape α > 0 

λ ∼ uniform(1,100) σ ∼ uniform(1,100) 

Gumbel 𝑓(𝑥) = 1𝜎 𝑒ି(௫ିఓఙ )𝑒ି௘ష(ೣషഋ഑ )
 

Scale μ > 0 
Shape σ > 0 μ ∼ uniform(1,100) σ ∼ uniform(1,100)

 
2.2.6 Model priors and model parameter priors 

Prior probabilities of models reflect the prior 
knowledge, or belief, that a specific model is the true 
model in the domain concerned. Whilst informative 
priors are expected to benefit model development and 
improve predictive performance, often non-informative 
priors have to be used due to little prior knowledge 
about the relative plausibility of the models considered. 

As a simple but reasonable neutral choice, it can be 
assumed that all candidate models in the model space 
are equally likely a priori. This means applying an uniform 
distribution over the model space, so that 𝑝൫𝑀௝൯ =ଵ௄ , 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝐾. No model is considered more likely 
a priori than any other one. The consideration is to let 
the observed data carry all the information. This is the 
most commonly adopted practice in defining model 
priors in BMA settings [6]. On this basis, the afore-
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mentioned 5 distributions are assumed to have the equal 
prior probability equal to 0.2. This leads to the prior 
model probabilities being cancelled out and the PMP of 
a candidate model being proportional to its evidence, i.e. 
marginal likelihood. 

The same consideration is applied to defining prior 
distributions of model-specific parameters. For any of 
the five candidate models, there is little prior 
information about its model-specific parameters. Hence 
it is straightforward to specify non-informative priors so 
as to allow the posteriors to be informed by data. As 
shown in Table 1, the priors of the model-specific 
parameters are all assumed to be uniformly distributed 
over their reasonable ranges in the context of generally 
short lifetimes of urban residential buildings in China. 

 
2.2.7 MCMC and posterior distribution calculation 

MCMC is used to simulate the posterior distribution 
of a model-specific parameters. The principle is to draw 
values of a parameter vector 𝜃  from approximate 
distribution and then correct those draws to better 
approximate the target posterior distribution. Sampling 
is performed iteratively in such a way that at each step 
of the process it is expected that draws are made from a 
distribution that becomes closer to the target posterior 
distribution [11]. The sampling process is sequential and 
the draws create an ergodic Markov chain, which, after a 
large number of iteration steps, evolves through the 
parameter space, becomes stationary and converges to 
the target posterior distribution. Subsequent model 
inference can be made based on samples from this 
process much as based on samples from the target 
posterior distribution [12]. 

This study uses the Metropolis-Hastings algorithm, 
which is well established amongst available MCMC 
algorithms. At the start of iteration t, a candidate vector 𝜃∗  is generated from 𝜃(௧ିଵ)  through a proposal 
distribution 𝑓൫𝜃∗ห𝜃(௧ିଵ)൯ , which is also known as a 
jumping distribution. The probability of 𝜃∗  being 
accepted to become 𝜃(௧) is: 
 

𝑟 = 𝑚𝑖𝑛 ⎩⎪⎨
⎪⎧1, 𝑝(𝜃∗|𝑑𝑎𝑡𝑎) 𝑓൫𝜃∗ห𝜃(௧ିଵ)൯൘  𝑝൫𝜃(௧ିଵ)ห𝑑𝑎𝑡𝑎൯ 𝑓൫𝜃(௧ିଵ)ห𝜃∗൯൘ ⎭⎪⎬

⎪⎫ ൫14൯ 

 
 
The acceptance probability r means that if the result 

is higher than 1, r is set to 1, the candidate 𝜃∗  is 

accepted and the transition from 𝜃∗ to 𝜃(௧) is made. 
Otherwise, if the result is lower than 1, the candidate 𝜃∗ 
is accepted with probability equal to r and rejected with 
probability equal to 1-r. When accepted, the transition 
from 𝜃∗ to 𝜃(௧) is made. When rejected, no move at 
iteration t is made, hence 𝜃(௧) =  𝜃(௧ିଵ), meaning that 
the chain is updated using the current value. 

The proposal distribution 𝑓(∙)  is chosen to be a 
random walk proposal, where 𝜃∗ is selected by taking a 
random perturbation ε around the current value 𝜃(௧) , 
i.e. 𝜃∗ = 𝜃(௧) + 𝜀 . The random vector ε is drawn 
independently of 𝜃(௧)  and centered on zero. As a 
common setting, ε is a normal distribution with mean 
zero and variance set to obtain efficient jumping 
algorithm [11]. In this regard, this study tunes the 
algorithm by using adaptive sampling, which generates 
new candidate parameters with a proposal covariance 
matrix that is estimated from the covariance matrix of 
the parameters generated so far, with a scaling factor of 
2.42/d, where d is the number of parameters [13]. 

 
2.2.8 Marginal likelihood calculation 

Generally, the marginal likelihood is not analytically 
tractable and therefore has to be approximated using 
numerical methods. Typical Monte Carlo sampling 
methods include naïve Monte Carlo, Importance 
Sampling (IS), Harmonic Mean (HM), Generalised HM, 
and Bridge Sampling. The Naïve Monte Carlo is 
straightforward and in principle unbiased, but 
numerically inefficient and unstable if the posterior 
distribution is peaked relative to the prior method. IS 
may overcome these issues by having an importance 
density with fatter tails than the posterior distribution. 
HM uses the posterior distribution as the importance 
density. This results in the marginal likelihood being 
equal to the posterior harmonic mean of the likelihood. 
Despite its convenience and popularity, HM has been 
criticized extensively due to numerical instabilities and 
overestimation of the marginal likelihood. Generalised 
HM, a more stable version of HM, can be viewed as the 
reciprocal IS. Thus, for the reason analogous to IS, this 
method also requires the importance density to be 
finetuned to avoid unbounded variance. Specifically, it 
requires importance density to have thinner tails than 
the posterior distribution. Bridge Sampling is a general 
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case of the afore-mentioned methods. It is more robust 
to tail behaviours of the proposal distribution 
(conceptually similar to importance density) relative to 
posterior distribution and thus avoids large or even 
infinite variances of estimators [14]. This study uses 
Bridge Sampling to approximate the marginal likelihood 
of each of the five candidate models. 

3. RESULTS AND DISCUSSION 
Based on the methodology elucidated above, the 

posterior distributions of model-specific parameters of 
each candidate model, 𝑝(𝜃௞|𝐷, 𝑀௞) , were obtained 
using official statistics on total stock of urban residential 
buildings up to 2006. The primary data sources included 
China Statistical Yearbook and MOHURD’s Statistical 
Communique on Urban Housing. Then, the evidence of 
each candidate model, i.e. the marginal likelihood, was 
numerically estimated using bridge sampling technique, 
and the PMP was calculated (Table 2). 

 
Table 2: Prior and posterior probabilities of models 

Model Prior PMP 
Weibull 0.2 0.219

Lognormal 0.2 0.25 
Loglogistic 0.2 0.096

Gamma 0.2 0.42 
Gumbel 0.2 0.015 

  
With each candidate model, the posterior predictive 

distribution of total stock over the period of 2007 to 
2017, 𝑦෤, was obtained through running the probabilistic 
stock turnover model using the posterior distributions of 
model-specific parameters, i.e. 𝑝(𝜃௞|𝐷, 𝑀௞) , and 
official statistics on annual new construction from 2007 
to 2017. The posterior distribution of 𝑦෤  predicted by 
the BMA model ensemble is the PMP-weighted average 

of the posterior predictive distribution of 𝑦෤ under each 
candidate model in the model space. Operationally this 
was obtained by drawing samples from model-specific 
predictions with probabilities equal to the PMPs and 
then combining the samples. Figure 1 shows the 95% 
credible interval of posterior prediction of total stock by 
the BMA model ensemble. As expected, the total stock 
size was characterised by a continuously ascending 
pattern over time. The mean of the credible interval 
increased by 33% over eight years from 17.7 billion m2 in 
2010 to 23.6 billion m2 in 2017. Clearly the line 
representing the mean of credible interval exhibits a 
good fit with the estimate by the Annual Report on China 
Building Energy Efficiency [1], which was developed by 
Tsinghua University Building Energy Research Centre 
(THUBERC) and is widely recognised as an authoritative 
report on the overall situation of building energy in 
China.   

 

 

 
Compared with a single point, deterministic estimate 

of annual stock size, the BMA approach taken by this 
study produces a profile for annual stock size, i.e. the 
posterior predictive distribution (Figure 2). This 
probabilistic estimate of annual stock size captures both 
models’ and the model-specific parameters’ 
uncertainties. Having depicted all possible pathways of 

Figure 2: Posterior predictive distribution of size of total stock 
in 2017 (unit: 100 million m2) 

Figure 1: 95% Credible interval of BMA ensemble’s posterior prediction of total building stock 
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stock evolution, it provides a full distribution of existing 
stock size per year and therefore helps to improve the 
reliability and robustness of not only the estimate of 
existing stock, but also the forecasting of future total 
stock which is a function of the existing stock and the 
underlying survival models and parameters. 

 

 

 
  

Furthermore, the dynamic building stock turnover 
model developed by this study offers additional insights 
into the composition of building stock through explicitly 
modelled building aging process. For each parameter 
vector in the parameter space of a candidate model in 
the mode space, the annual total stock is disaggregated 
into age-specific substocks, each of which goes through 
an aging process subject to age-specific demolition rate 
determined by the hazard function specified by this 
particular parameter vector of this particular candidate 
model. For each year, the substock of new buildings 
constructed in this year and the substocks of existing 
buildings at various ages that remain in use collectively 
create the age profile of the entire stock. For the year 
after, the stock’s age profile is updated due to new 
construction, aging and demolition. These on-going 
dynamics, which result in the turnover of the overall 
stock and detailed representation of age-specific 
substocks, are fully captured in the dynamic model and, 
more importantly, are further characterised 

probabilistically by the BMA model ensemble through 
the posterior distributions of model-specific parameters 
and PMPs of candidate models. This allows to obtain the 
full distribution of each age-specific substock in any given 
year. Figure 3 shows the posterior predictive 
distributions of substocks aged 10, 15, 20 and 25 within 
the total stock in 2017. 

The BMA model ensemble and its results have 
significant implications for the energy consumption and 
carbon emissions of buildings. Firstly, the possible 
lifetime distribution profile specified by a parameter 
vector in the parameter space of a candidate model 
enables explicit estimate of annual new construction and 
demolition, which are fundamental to quantifying the 
initial and demolition embodied energy and carbon per 
year. Secondly, model granularity at the level of age-
specific sub-stocks offers a detailed representation of 
buildings’ heterogeneity with respect to operational 
energy performance, which is expected to improve due 
to stringent design codes and technological advances. 
Thirdly, more importantly, the ability to model the 
temporal stock dynamics integrates embodied and 
operational dimensions of building energy and carbon. 
By simultaneously investigating both dimensions, it is 
possible to explore their importance relative to each 
other in the context of future building sectoral 
developments in green building materials, strengthening 
design codes for new buildings, and scaling up energy-
related retrofits of existing buildings. This presents a 
fuller picture of stock-level lifecycle energy and carbon. 

Across the three dimensions, the uncertainties 
associated with model-specific parameter vectors and 
candidate models, as fully captured by the BMA model 
ensemble, along with uncertainties of other parameters 
and input variables needed for modelling energy, can be 
propagated into the emergent stock-level outputs, such 
as annual total embodied energy and annual total 
operational energy of total stock. The full Bayesian 
approach and the resultant probabilistic distribution of 
stock-level outputs can mitigate the risk of potential 
over- or under-estimate that would otherwise be more 
likely to be produced by deterministic models. This 
creates a powerful modelling framework with enhanced 
robustness and reliability, thereby allowing for more 
effectively experimenting and analysing policies aiming 
to decarbonise buildings in the broader context of 
peaking China’s economy-wide emissions by 2030. 

4. CONCLUSIONS 
This paper presents a statistical model to estimate 

total stock size of urban residential buildings in China, for 

Figure 3: Posterior predictive distribution of sizes of substocks 
at various ages in 2017 (unit: 100 million m2) 
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which official data only exists up to 2006. It firstly 
develops a probabilistic dynamic model characterising 
the building aging and demolition process and overall 
stock turnover, then operationalises the model by 
separately using various candidate parametric survival 
models as an integral part of the overall model, and 
finally applies Bayesian Model Averaging (BMA) to create 
a model ensemble to combine predictions of the stock 
evolution pathway made by each candidate survival 
model based on their respective posterior model 
probabilities.  

This study is a first-of-its-kind attempt to take a full 
Bayesian approach to investigate model and parameter 
uncertainties that were not taken account of by limited 
existing models targeting Chinese building stock, which 
is a strategically important but under-researched area. 
The modelling approach and the results can serve as a 
baseline for further studies on forecasting building stock 
development trajectory and analysing energy and carbon 
impacts, with particular regard to modelling and 
analysing policy scenarios to investigate the trade-offs 
across embodied-versus-operational energy and carbon 
emissions facing Chinese residential buildings. 
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