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ABSTRACT 

This study involves the application of artificial neural 
network (ANN) as an intelligent approach to predict the 
output power of one alpha-type Stirling engine under 
some operating conditions. One ANN model had been 
developed based on experimental data from published 
literature. Output power as one of the performance 
indicators, was chosen as a response to input 
parameters, heat source temperature, engine speed and 
charging pressure. A multi-layer feed-forward network 
with a back-propagation algorithm had been proposed 
for such a prediction. The ANN model had been proven 
to be desirable in accuracy for predicting the output 
power by comparing the model results with 
experimental ones under the same operating conditions. 
This work would provide an effective approach based on 
ANN technique for solving complex design problems 
either with linear or nonlinear nature. 
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NONMENCLATURE 

Abbreviations  

ANN Artificial Neural Network 

Symbols  

t target (Actual output) 
o Network output (Predicted output) 

1. INTRODUCTION 
Stirling engine has attracted increasing attention in 

recent decades for its unique advantages including using 

environmentally-friendly working substances, high 
efficiency, the ability to utilize low grade energy and 
quiet operation [1]. Stirling engines can be classified 
according to pistons arrangement into alpha, beta and 
gamma type [2] and each type can be applied in different 
occasions. 

The performance indices for a Stirling engine 
including output power, shaft torque and efficiency 
depend primarily on the system parameters with respect 
to mechanical connections, operating conditions, 
structure geometry and materials properties [1]. The 
identification of the relationship among those design 
parameters and desired performances is considered the 
basis for appropriate design of Stirling engines. However, 
the performance of Stirling engine is still difficult to 
obtain greatly due to the performance can be influenced 
by numerous factors and the influencing process is so 
complex and usually nonlinear. In past few decades, 
many researches were focused on analysing, designing 
and testing of Stirling engines [2]. Analytical solutions to 
obtain the performances are usually not accurate 
enough for nonlinear problems with too many 
assumptions. The experiments works can provide more 
accurate results, but the information obtained from 
experiments is limited, mainly because the experiments 
are costly, time consuming and inflexible. Therefore, a 
method which could help to produce more information 
only based on limited experiment data is required. 

Recently, ANN as a purely data driven model, has 
become a popular technology in many thermal science 
and engineering fields [3, 4]. The ability of ANN to learn 
from examples makes it efficient problem-solving 
paradigms in recognizing and learning underlying implicit 
relations between inputs and outputs regardless system 
dimensionality or nonlinearity besides the high tolerance 
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to data containing noise and measurement errors. On 
the other hand, ANN has been considered an effective 
alternative to traditional statistical techniques for 
function approximation and data fitting without 
hypothetical data distribution premise. These 
advantageous features could possibly make ANN more 
attractive alternatives to statistical approaches and 
numerical models. 

Various degrees of research work were implemented 
using ANN [4] or ANN hybridized with other optimization 
methods [5] in order to predict the performances of 
Stirling engines under different design conditions. 
Undoubtedly, these researches demonstrated that ANN 
models are capable of mapping the implicit relationship 
between considered operating parameters and the 
corresponding responses. In this regard, it was noticed 
that most of research works were focused on beta-type 
or gamma-type Stirling engines due to their high output 
power density. However, it is noteworthy that alpha-
type Stirling engine has many significant advantages over 
other types including (i) Simple mechanism, (ii) Heating 
and cooling occur in separate cylinders which enables 
the engine to be used in applications with a large enough 
external heat transfer surface, (iii) Possibility to operate 
in either single-acting or interconnected double-acting 
piston configurations. Çinar [6] did an experiment for 
alpha-type Stirling engine to investigate the relationship 
between output power and some operational 
conditions. In the present study, ANN is introduced to 
map the implicit relationship between some operating 
parameters and corresponding performances based on 
the experiment results from Çinar [6]. 

2. ARTIFICIAL NEURAL NETWORK MODEL FOR 
PREDICTING THE OUTPUT POWER 

2.1 Physical Model 
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Fig 1 Schematic diagram of alpha-type Stirling engine 

As shown in Fig. 1, the alpha-type engine used in [6] 
consists of two power pistons in separated cylinders, a 
crankcase, a crankshaft, two connecting rods, a flywheel 
and a connecting pipe inside which the regenerator is 
situated. More construction details are given by Çinar 
[6]. 

2.2 Determination of data samples 

For the sake of convenience of comparison, 62 
experimental data from [6] would be used as the data 
samples to build the ANN model. Heat source 
temperature, engine speed and charging pressure were 
considered as the input parameters influencing the 
output power. Practically, it was verified that the output 
power is closely related with but roughly proportional to 
those three parameters [6, 7]. Here, the data sample 
values of heat source temperature range from 800℃ to 
1000℃ while the values of engine speed range from 176 
r/min to 471 r/min and the charging pressure values 
range from 1 bar to 3 bar. These three parameters have 
a significant influence on the output power of the engine. 

For the ANN model, the considered 62 data samples 
were divided into two groups. The first group includes 54 
data samples for the purpose of building the model while 
the second group including the remaining 8 data samples 
was used as unseen data samples for the purpose of 
verifying the prediction ability. The first group data 
samples were split into three data sets: 70% for training 
to learn, 15% for validation to minimize over-fitting and 
15% for testing to assess the generalization performance 
of trained model. These three data sets were normalized, 
then randomized and finally introduced sequentially to 
the ANN model. 

2.3 Optimization of ANN model 

Optimization of ANN aims at minimization of its 
objective function (i.e., error function) during training 
process through tuning the values of weights and biases 
of the network. ANN models are often characterized by 
structure, neuron characteristics, learning parameters, 
training algorithm and training function, which represent 
the constraints for optimizing the network performance. 
Structurally, a typical feed-forward neural network with 
one hidden layer as shown in Fig. 2(a) is commonly 
adopted in majority of applications. Herein, the mean 
square error (MSE) is commonly used as the objective 
function for feed-forward neural networks which gives 
the average squared error between network outputs and 
targets during the validation phase as given in Eq. (1). 
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Fig 2 (a) A three-layer ANN model for the alpha-type Stirling 

engine; (b) A multi-layer feed-forward ANN with a back-
propagation algorithm 
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Besides, the number of input and output neurons is 
determined according to the considered modelling 
problem while number of hidden neurons needs to be 
accurately optimized. In this regard, the number of 
hidden neurons was changed iteratively from 2 to 20 
with a gradual step of 2. Moreover, back-propagation 
algorithm as shown in Fig. 2(b) with Levenberg-
Marquardt training function, was adopted here for low- 
and moderate-sized networks. On the other hand, three 
criteria were set in order to evaluate the network 
performance. The first criterion is to choose the least 
MSE during the validation phase. The second criterion is 
to decrease the complexity and network size if possible. 
Finally, the third criterion is to analyze the regression 
between the network responses and corresponding 
targets (actual outputs) from the correlation coefficient 
(R2) as illustrated in Eq. (2). In general, R2 value varies 
between 0 and +1, where R2 value close to +1 indicate a 
robust positive linear correlation between the network 
outputs and targets, while the values near to 0 indicate a 
very weak correlation. 
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The proposed ANN model had been trained several 
times until the error between predicted and actual 
values of output power was minimized. It can be noticed 
from Fig. 3(a) that MSE was minimized at 10 hidden 
neurons with a value of 0.0036. In addition, the 
performance of the proposed ANN in predicting the 
output power was validated through analyzing the 
correlation coefficient (R2) between predicted and actual 
values during testing phase as shown in Fig. 3(b), from 
which the highest R2 value of 0.98 was achieved. 
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Fig 3 (a) Sensitivity of the MSE for the network model vs. 
number of hidden neurons; (b) Variation of correlation 
coefficient (R2) between network and actual outputs vs. 

number of hidden neurons 

In more detail, the regression plots were presented 
in Fig. 4. From this figure, there is a very good fit between 
predicted outputs and targets (actual outputs) due to 
higher values of regression (R2) during training, 
validation and testing phases. These regression plots 
verify that established ANN model with the configuration 
of 3-10-1 can accurately predict the output power of 
alpha-type Stirling engine within the covered range of 
study.  

(a) 

(b) 

(a) 

(b) 
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Fig 4 Regression plots for training, testing and validation 

phases 

3. RESULTS AND DISCUSSIONS 

In order to verify the prediction ability of ANN model, 
the 8 data samples of the second group mentioned 
previously, which were not still used in building the 
model, had been introduced to our established network 
(3-10-1). The predicted results from the established ANN 
model were compared with corresponding experimental 
results under same operating conditions as shown in 
Table 1. It can be noticed that the predicted results from 
ANN model were in a very good agreement with the 
experimental results with the average prediction error 
percentage of 1.53%. This implies the strong ability of 
established ANN model to predict the output power of 
the considered alpha-type Stirling engine with a good 
degree of accuracy for any input values within the 
covered range of this study. 

Table 1. Comparison of predicted results by ANN model with 
experimental results (Note: data samples were extracted from 
Ref. [6]) 
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2 850 286 8.46 8.56 1.15 

1.53 

2 1000 286 13.82 13.75 0.49 
3 1000 214 15.36 15.39 0.17 
3 1000 286 18.16 18.87 3.92 
3 1000 413 15.40 15.58 1.22 
2 950 286 12.38 12.19 1.50 
3 950 286 15.96 15.88 0.53 
1 950 286 5.30 5.12 3.27 

4. CONCLUSIONS 
One artificial neural network model had been 

developed for alpha-type Stirling engine to predict the 
output power under specific operating conditions. It was 
found that one hidden layer with optimal 10 neurons can 
provide a better prediction performance. The average 
percentage error of predicted output power values 
compared to experimental ones was found to be 1.53 % 
which indicates high accuracy of our model and proves 
that well-trained neural network models can provide 
fast, accurate and consistent results. Moreover, 
according to our research, ANN is able to be considered 
a supplement for experiments to produce more related 
information related with Stirling engine. Further applied 
research will be devoted to modelling of complex design 
problems including complex mappings, parameters 
identification, as well as the optimization for Stirling 
engines and their key components. 
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