
Paper ID APEN-MIT-2020_164 

Applied Energy Symposium: MIT A+B 

August 12-14, 2020 • Cambridge, USA 

 

 

On Energy Optimal Speed Trajectories in Urban 

Traffic: Implementation Options 
 

1st Eduardo Fernando Mello 

Department of Electrical Engineering  

University of Notre Dame 

South Bend, U.S. 

emello@nd.edu 

 

2nd Peter Bauer  

Department of Electrical Engineering 

University of Notre Dame 

South Bend, U.S. 

pbauer@nd.edu  

Abstract—Realization methods for energy optimal urban 

driving are the prime focus of this paper. Insights into the 

real-time generation of such trajectories as well as “in traffic” 

methods for their execution are provided. This includes the 

usage of piecewise linear approximations of typical urban 

speed profiles, urban platooning, filtering of trajectories, and 

modifying initial accelerations on the trajectory 

implementation side. On the computation side, precomputed 

trajectories, and closed-form approximated solutions are 

investigated.   
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I. INTRODUCTION 

The reduction of greenhouse gases, in particular CO2 
emissions, in the future will determine the fate of our planet. 
The transportation sector is responsible for approximately 
30% of all manmade CO2 emissions and thus is one of the 
areas where reduction of emissions has a large impact [1]. The 
transition from fossil fuel-based transportation methods to 
sustainable transportation will occur on many different fronts, 
and electrified drivetrains are playing a major part in this 
transition. Of course, electrified transportation only 
contributes to a solution to the emission problem if the origin 
of the power used comes from renewable sources of energy. 
The work introduced here is based on the assumption of an 
electrified drivetrain and at least level 2 autonomous driving 
capability with situational awareness [2].  

It has recently been shown [2] that electrified drivetrains 
in urban environments offer great potential for efficiency 
improvement by simply optimizing the speed trajectory 
between stops. The results in [2] point to energy savings of 
between 30% and 60% depending on vehicle data, drive 
segment length, speed, etc. However, these results were 
obtained by simulations that made three key assumptions: 

• 100% situational awareness, i.e. exact knowledge of 
future stops, average speed, etc. 

• Other traffic participants do not interfere with the 
execution of the optimal drive cycle 

• Real-time computability can be achieved. 

The focus of this paper is on the last two items, i.e. 
minimizing the effect of other traffic participants (that do not 

optimize transportation energy) on achievable efficiency 
gains, and the timely generation of the optimal speed 
trajectory. Resolving these issues will be key for maximizing 
the impact of the concepts proposed in [2], especially during 
the transition to global energy optimal driving, i.e. for mixed 
traffic.  

The paper is structured as follows: In section 2 we 
highlight some of the previous results on energy optimal stop-
to-stop speed trajectories that apply to the case of perfect 
situational awareness. Section 3 provides the problem 
formulation for this paper concentrating on two major 
questions. Section 4 provides solutions to the first problem, 
i.e. optimal trajectories in mixed traffic. The problem of real-
time trajectory generation is tackled in section 5, while section 
6 provides conclusions and outlook. 

II. PREVIOUS RESULTS 

Energy optimal stop-to-stop speed trajectories have been 
investigated in quite some detail in [2]-[4]. In essence, the 
problem is to minimize transportation energy at the source, i.e. 
the battery, when moving from stop to stop with prescribed 
constraints such as average speed, maximum allowable 
acceleration, etc. Analytically the problem can be formulated 
as follows [2]:  
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An example of an optimal speed trajectory is shown in 
Fig. 1 for a Tesla Model S. Corresponding energy savings 
relative to a typical FTP 75 derived trajectory is shown to be 
around 33% in this case. The constraints were given by the 
average speed (15m/s) and maximum acceleration (8m/s2).  It 
has been shown in [3] that energy savings that can be attained 
by using this approach are dependent on infrastructural (speed 



limit, average speed, distance) and vehicle (mass, cross-
sectional area, coefficient of drag, etc.) data. The powertrain 
efficiency characteristics also play a significant role in the 
achievable efficiency gains. In all the previous work, the 
reference case was a typical stop-to-stop speed profile that was 
“distilled” from the FTP 75 drive cycle. 

III. IMPLEMENTATION PROBLEMS 

Obtaining the efficiency gains shown in Fig. 1 requires an 
exact execution of the optimal speed profile, i.e. a self-driving 
system is required. In typical urban traffic, executing the 
optimal speed trajectory is often not possible due to traffic 
constraints and unforeseen events. In congested urban traffic, 
speed trajectories are somewhat dictated by other vehicles and 
optimal trajectories as shown in Fig. 1 are almost impossible 
to realize. Some mitigation for this problem was suggested 
in [2], but more realistic concepts are needed.  In the section 
that follows, a few approaches that appear promising are 
introduced and analyzed.  

Another aspect of the implementation task is real-time 
computability. Usually, situational awareness information 
changes quickly in urban environments and one has only 
seconds to gather new information and then compute the 
optimal speed trajectory. Therefore, one must look for 
approaches that reliably solve the optimization task in a short 
amount of time. In section V, three different approaches are 
highlighted and an initial analysis is provided. 

IV. REALIZATION APPROACHES FOR EFFICIENCY OPTIMIZED 

DRIVING 

A. Urban platoons 

Rather than dealing with mixed traffic problems where 
autonomous and networked electric vehicles operate among 
conventional vehicles, generating platoons of similar vehicles 
that operate optimally and in unison has many advantages 

such as decongestion of traffic and the ability to actually 
execute the optimal trajectory with high probability. In 
principle there are two types of platoons: a rigid platoon, 
where following distances are tightly controlled and all 
vehicles move in unison similar to a train of vehicles, and 
floating platoons where each vehicle optimizes its own 
trajectory, thus requiring larger and varying distances between 
vehicles. Optimized platoons can be generated and realized in 
several different ways; we will provide several realization 
options and the associated energy savings compared to 
conventional non-optimized traffic. Initial simulation results 
show that while especially in rigid heterogeneous platoons one 
has some efficiency loss, efficiency is still significantly higher 
than for conventional driving. The most efficient solution is 
shown to be the case of rigid homogeneous platoons operating 
in dedicated lanes. Two examples of this scenario are shown 
in Fig. 2 (a) that demonstrates the dependency of energy usage 
on the number of platoon vehicles for a given stop-to-stop 
segment. The energy savings associated with these platoon 
realizations are shown in Fig. 2 (b). For the shorter segment, 
energy savings averaged 39% while for the longer segment, 
the average savings were equal to 53%. 

For the efficient realization of urban platoons, one needs 
to define criteria for accepting vehicles in the formation. 
While several admission rules can be defined, we will 
introduce three options. 

1) Minimizing total transportation  energy 
The first acceptance rule to be discussed is based on the 

total energy consumption of the platoon. Let ℙ =
{𝑉𝑖  | 𝑖 =  1,… , 𝑁} be the set of vehicles in a platoon of 𝑁 
vehicles. The energy of the platoon between two stops is 

defined as 𝐸𝑠𝑗
𝑠𝑗+1(ℙ)  where 𝑠𝑗  is the stop of index 𝑗  in the 

urban scenario. 𝑉𝑁+1 is the vehicle to be added to the platoon. 

    The left-hand side (LHS) of (2) describes the energy 
consumption of the previous platoon configuration of 𝑁 
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Fig. 1. Energy optimal trajectories (a) speed (b) cumulative energy 
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Fig. 2. Typical achievable efficiency gains for a rigid homogeneous 

platoon using an optimized trajectory. 



vehicles plus the individual energy of the potential new 
platoon member. The energy of the new platoon of 𝑁 + 1 
vehicles configuration is described in the right-hand side 
(RHS) of (2). 

    Therefore, the admittance rule can be stated as: 

If: ∑ 𝐸𝑠𝑗
𝑠𝑗+1(ℙ)

𝑁−1

𝑗=0

+∑𝐸𝑠𝑗
𝑠𝑗+1({𝑉𝑁+1})

𝑁−1

𝑗=0

>

                                                    ∑ 𝐸𝑠𝑗
𝑠𝑗+1(ℙ ∪ {𝑉𝑁+1})

𝑁−1

𝑗=0

 (2)

 

Then: ℙ(𝑡 + 1) = ℙ(𝑡) ∪ {𝑉𝑁+1} (3) 

Else: ℙ(𝑡 + 1) = ℙ(𝑡) (4) 

If in equation (2), the expression in the LHS is greater than 
the one in the RHS, the vehicle should be accepted to the 
formation, i.e., equation (3) is true; otherwise, the candidate 
vehicle should be rejected and (4) is true. 

2) Specific parameter intervals 
In contrast to the previous strategy, the parameter list 

acceptance rule is not based on energy consumption but solely 
on vehicle parameters. 𝑢𝑛𝑒𝑤  defines the parameter set of a 
vehicle trying to join the platoon (5). 

        𝑢𝑖 =
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(5) 

If 𝑢𝑚𝑖𝑛 ≤ 𝑢𝑛𝑒𝑤 ≤ 𝑢𝑚𝑎𝑥, the candidate vehicle should be 
accepted in the platoon as shown in (3); otherwise, the vehicle 
is rejected, i.e., (4). This is a simple rule to check and enforce; 
therefore, the platoon composition is predictable and its worst 
case is easily computable. 

3) Individual vehicles voting 
The last proposed acceptance rule is based on individual 

platoon members evaluating their energy consumption. If the 
energy expenditure of an individual platoon member were to 
increase with the addition to the platoon of the to be admitted 
vehicle, it would vote to not accept the candidate. In contrast, 
if the individual platoon member were to perceive a reduction 
in energy consumption, it would vote to accept the candidate 
vehicle. Different acceptance thresholds are then set based on 
the current size and heterogeneity of the current platoon, e.g., 
a majority rule when the platoon is greater than two distinct 
vehicles. If the set threshold is met, the new vehicle is added 
to the platoon, i.e., (3) holds. If the threshold is not achieved, 
the vehicle is rejected and (4) holds. 

All three of these approaches will result in different 
asymptotic compositions. However, it is not clear how this 
asymptotic behavior is affected by the selection rules. 

B. Piecewise linear trajectory approximations 

For individual vehicles optimization of urban driving 
speed trajectories, it is necessary to adapt to traffic conditions, 
especially in dense or congested traffic. A quasi-piecewise 
linear approximation of a typical FTP 75 stop-to-stop cycle 
appears to be an interesting approach that can adapt to typical 
traffic speeds while saving energy. 

A possible implementation of this approach is shown in 
Fig. 3 (a) for a vehicle based on a Nissan Leaf. Fig. 3 (b) shows 
the distance between vehicles and Fig. 3 (c) the cumulative 
energy consumption to execute each one of the trajectories. 
For this segment of the FTP 75, the piecewise linear 
approximation utilizes 11.12% less energy.  As demonstrated 
in [3], optimal speed trajectories achieve greater 
transportation energy savings for vehicles with higher 
acceleration capabilities. For that reason, the FTP 75 cycle 
was approximated by segments of high acceleration (close to 
the vehicle’s limitations) followed by segments of coasting.  

Starting from the force at the vehicle’s wheels (6), the 
coasting deceleration can be calculated by the expression 
shown in (7). 

𝑚�̇� + 𝑚𝑔𝑓𝑟 +
1

2
𝐶𝑑𝐴𝜌𝑣2 = 0 (6) 

�̇� = −𝑔𝑓𝑟 −
1

2

𝐶𝑑𝐴

𝑚
 𝜌𝑣2 (7) 

While the speed from the lead vehicle—which executes 
the FTP75 drive cycle—is given by 𝑣1(𝑡), the speed from the 
vehicle executing the quasi-piecewise linear trajectory is 
given by 𝑣2(𝑡). The difference between those speeds at any 
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Fig. 3. (a) Piecewise linear trajectory approximation of a segment of the 
FTP75 drive cycle, (b) the distance between lead and following vehicle, 

and (c) the cumulative energy of each vehicle. 



given time is given by Δ𝑣(𝑡) , shown in (8). The limit in 
variation between speed is then given by Δ𝑣𝑚𝑎𝑥 , (9). 

Δ𝑣(𝑡) = 𝑣1(𝑡) − 𝑣2(𝑡) (8) 

|𝛥𝑣(𝑡)| < 𝛥𝑣𝑚𝑎𝑥   (9) 

Finally, the distance between vehicles as a function of time 
can be calculated as shown in (10). 

Δ𝑑(𝑡) = ∫ 𝑣1(𝜏)𝑑𝜏
𝑡

0

−∫ 𝑣2(𝜏)𝑑𝜏
𝑡

0

 (10) 

The approach exemplified above is then applied to every 
segment of the FTP 75 cycle. A series of simulations were 
calculated where Δ𝑣𝑚𝑎𝑥  was varied. The results are shown in 
Fig. 4. While the bars in blue represent the average savings 
between each segment of the drive cycle, the bars in red show 
the overall savings after executing the entire FTP75 drive 
cycle. 

C. Starting delays and trajectory lowpass filtering 

As was shown in [2], the combination of a starting delay 
in combination with a low pass filtered trajectory transforms 
energy optimal trajectories to more viable trajectories in real 
traffic. This transformation also takes away the surprise effect 
a sudden high acceleration of an autonomous driving system 
may cause where the associated jerk may not be acceptable. A 
speed trajectory, where filtering was applied, and its 
respective energy budget are shown in Fig. 5.  This figure 
clearly shows that the delayed and filtered trajectory is not 
only more smooth but the distance between vehicles can be 
controlled, i.e. a larger delay and/or a longer low pass filter 
response creates more distance to the vehicle in front. It should 
also be noted that the lowpass filtering can be described as the 
convolution of the optimized trajectory 𝑣(𝑡) with an impulse 
response ℎ(𝑡) (11). While choosing a positive lowpass filter 
with a DC gain of one (12) would not change the total distance 
traveled (13), it will slightly reduce the average speed from �̅� 
to (�̅� 𝑡𝑓)/(𝑡𝑓 + Δ𝑡) , where Δ𝑡  is the duration of the filter 

response. As a consequence, energy is also slightly reduced.  

𝑣𝑛𝑒𝑤(𝑡) = 𝑣(𝑡) ∗ ℎ(𝑡) (11) 

∫ ℎ(𝜏)𝑑𝜏 = 1
∞

0

 (12) 

∫ 𝑣𝑛𝑒𝑤(𝜏)𝑑𝜏
∞

0

= ∫ 𝑣(𝜏)𝑑𝜏 = 𝑑
∞

0

 (13) 

In Fig. 6, a longer optimized segment (1000 meters) 
demonstrates an optimal trajectory for a vehicle with low 
acceleration capabilities that was filtered and delayed to 
maintain a safe distance from the lead vehicle. A six-second 
filter and a three-second delay were applied. The distance 
between vehicles Δx(𝑡) is shown in Fig. 6 (b) and it can be 
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Fig. 5. LP filtered optimal trajectories and associated energy budget. 

 

Fig. 4. Energy savings for the piecewise linear trajectory approximation 

approach as a function of the allowed speed variations. 
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(c) 

Fig. 6. (a) Speed profiles for the lead vehicle, optimized vehicle, 

optimized vehicle after filtering, and optimized vehicle after filtering and 

delayed start, as well as (b) the distance between each of the optimized 
scenarios and the lead vehicle, and (c) the energy budget of each one of the 

scenarios. 



expressed by (14). The initial distance is denoted by Δ𝑥0 and 
𝑣1(𝑡) and 𝑣2(𝑡) denote the speed of the lead vehicle and the 
optimized vehicle, respectively.  

Δ𝑥(𝑡) = Δ𝑥0 +∫ 𝑣1(𝜏) − 𝑣2(𝜏 − 𝑡0)𝑑𝜏
𝑡

0

 (14) 

D. Lowering initial acceleration 

A simple way to adjust to slow congested traffic is to 
reduce the initial acceleration of the speed trajectory. 
However, as shown in Fig. 7, reducing the initial acceleration 
has a significant effect on efficiency. For example, reducing 
maximum acceleration from 6 m/s2 to 4 m/s2 reduces energy 
savings from 44.11% to 40.68%. Further reducing the 
maximum acceleration to 2 m/s2 reduces the savings to 
14.72%.  Depending on traffic situations, in typical urban 
traffic, the initial acceleration values are between 1.5m/s2 and 
2.5m/s2. Adapting the optimal speed profile to these values 
can be, as Fig. 7 shows, not a good solution to the problem 
since it comes at a high energy penalty. On the other hand 
Fig. 7 also shows, that vehicles with a high acceleration 
capability have an advantage and can save more energy than 
vehicles with lower acceleration. For accelerations above 
4 m/s2, diminishing returns can be observed. 

V. TRAJECTORY GENERATION 

1) Precomputed and stored trajectories 
To avoid real-time computation of the optimal trajectory, 

storing pre-computed trajectories is an attractive option. This 
section explores the required storage capacity as a function of 
the sampling rate of segment length, average speed, and initial 
acceleration. It also provides some guidance concerning the 
sampling frequency needed, estimated compression gains, and 
possible interpolation mechanisms.  

Typical energy-optimal speed trajectories have between 
50 and 300 data points. Each of these data points represents a 
value of speed. This variation arises from the necessity of 
storing more data points to represent a long-optimized 
segment since the trajectory is discretized in time with a fixed 
time step (Δ𝑡). By assuming the upper limit of the necessary 
data points, e.g., 300 data points, we can calculate an upper 
bound for the necessary storage capacity. Assuming the data 
will be stored in 16-bit integers (2 bytes) each trajectory would 
require 600B of storage. 

If one desires to precompute all segments ranging from 
100m to 3000m, in 10m intervals, approximately 300 
trajectories would be necessary. These trajectories would 
utilize approximately 175.8 kB. If the average speeds between 
3 and 23m/s, in intervals of 1m/s, are desired, approximately 
6,000 trajectories are necessary, bringing the necessary 

storage capacity to 3.43MB. Finally, if variations of initial and 
final decelerations are also required, one can subdivide the 
vehicle capabilities into 16 groups (4 values for the maximum 
allowed acceleration and 4 values for the maximum allowed 
deceleration). This brings the total of optimal trajectories to 
384,000. All these trajectories can be stored in less than 
220MB, posing no burden to any modern computer system. 

Even though storing all the trajectories requires little 
storage, the necessary capacity can be further reduced by 
utilizing compression algorithms, such as Huffman Coding. 
This algorithm is estimated to reduce the necessary storage 
requirement by approximately a factor of ten [5]. 

Furthermore, an approximation of the optimal speed 
trajectories can be recreated with only critical points of the 
original trajectories. The optimal trajectory in Fig. 1 (a) can be 
subdivided into three distinct segments: acceleration, 
coasting, and deceleration. By storing the time and speed at 
the end of each segment, one can easily reconstruct an 
approximation of the original form. The more complicated 
optimal trajectories for longer segments shown in [2] can be 
expressed by additional data points. Each critical point 
requires 4 bytes to be stored, 2 bytes for the time and 2 for the 
speed. Assuming an average trajectory requires 10 data points 
to be expressed, the 384,000 trajectories described before can 
be stored in around 15MB.  

Since the optimal speed trajectories can be closely 
approximated by linear segments, a linear approximation may 
provide sufficient accuracy to approximate the original 
trajectories. More sophisticated interpolation methods may be 
also implemented. In addition, a polynomial interpolation may 
be used to approximate the original form whilst also 
minimizing onsets on acceleration and jerk. 

2) Closed-form approximations 
Another attractive method to bypass real-time 

optimization is the usage of linear approximations of the 
optimal trajectories. For the case where the optimal trajectory 
consists of only three segments, shown in Fig. 8, the closed-
form expressions below will be shown to provide a good 
approximation for the optimal speed profile. 

For this analysis, the parameter �̅� represents the average 
speed of the optimal trajectory, 𝑑 the segment length, 𝑎1 =
𝑎𝑚𝑎𝑥  the initial acceleration, 𝑎2 the approximated coasting 
deceleration, and 𝑎3 = 𝑎𝑚𝑖𝑛 the braking deceleration. Based 
on the integral of Fig. 8, the total traveled distance is given 
by (15). 

𝑑 =
𝑎1
2
𝑡1
2

⏟
distance
segment 1

+
2𝑎1𝑡1 + 𝑎2𝑡2

2
𝑡2⏟          

distance
segment 2

+
𝑎1𝑡1 + 𝑎2𝑡2

2
𝑡3

⏟        
distance
segment 3

 (15)
 

 

Fig. 7. Energy savings a as function of maximum acceleration for a Tesla 

Model S in a 500-meter segment at 15 m/s. 

 

Fig. 8. Sample trajectory for closed-form approximation of a 3-segment 

optimal speed profile. 



The total time of the trajectory is defined by (16).  

𝑡1 + 𝑡2 + 𝑡3 = 𝑇 =
𝑑

�̅�
 (16) 

Since the speed trajectory starts and stops at zero speed, 
(17) must also hold. 

𝑎1𝑡1 + 𝑎2𝑡2 + 𝑎3𝑡3 = 0 (17) 

With some algebraic manipulation, the expressions (18) to 
(20) for the times 𝑡1, 𝑡2, and 𝑡3 can be obtained. Also, based 
on the average force acting at the wheels of the vehicle, 𝑎2 can 
be defined as shown in (21). 

𝑡1 =
𝑡2(𝑎3 − 𝑎2) − 𝑎3𝑇

𝑎1 − 𝑎3
 (18) 

𝑡2 = √
2𝑑(𝑎1 − 𝑎3) + 𝑎1𝑎3𝑇

2

(𝑎1 − 𝑎2)(𝑎3 − 𝑎2)
  (19) 

𝑡3 = 𝑇 − 𝑡1 − 𝑡2 (20) 

𝑎2 = −𝑔𝑓𝑟 −
1

2

𝐶𝑑𝐴

𝑚
𝜌𝑣

2
 (21) 

Finally, the total energy consumption of the trajectory can 
be estimated by (22). 

𝐸𝑏𝑎𝑡 =
𝑚𝑎1𝑡1

2

2𝜂
(𝑎1 + 𝑔𝑓𝑟) +

𝐶𝑑𝐴𝜌𝑎1
3𝑡1
4

8𝜂
 (22) 

In the equations above, the indices show the segment 
number that the acceleration or time is affiliated with, e.g., 𝑎1 
and 𝑡1  are acceleration and duration of segment 1. The 
accelerations 𝑎1  and 𝑎3  are given by the maximum 
acceleration and deceleration of the vehicle, 𝜂 is the power 
train lumped forward efficiency, the variables 𝑣 ,  𝑑 , and 𝑇 
represent the average speed, segment length, and the total 
travel time, which are known for a given trajectory. 
(Regenerative braking efficiency is assumed to be zero.) The 
variables 𝑔 , 𝑓𝑟 , 𝐶𝑑  ,  𝐴 ,  𝜌 , and  𝑚  represent the following 
vehicle and environmental parameters: gravitational 
acceleration, coefficient of rolling resistance, air-drag 
coefficient, vehicle’s frontal area, air density, and vehicle’s 
mass, respectively. Finally, the energy utilized by the vehicle 
is denoted by 𝐸𝑏𝑎𝑡 . 

The closed approximation approach above was then 
applied to segments varying in range from 300 to 800 meters. 
The results shown in Fig. 9 demonstrate that (22) can produce 
very good approximations of the energy consumption of an 
optimal trajectory, especially for short segments. Also, one 
can conclude that the approximated optimal speed trajectories 
have very similar energy consumption to the ones obtained 
from the optimization scheme described in section II. It is 
important to note that the calculated energy consumption of 
the closed-form approximations are slightly lower than the 
energy consumption of the optimized trajectories because they 
do not obey all the constraints imposed by the optimization 
scheme. 

If a high degree of accuracy is required, neither 

precomputed optimal speed trajectories nor close form 

approximations can produce satisfactory results. In this case, 

the only possible method for generating the optimal speed 

trajectories in a timely fashion would be cloud computing 

utilizing V2I communication. Such an approach should be 

feasible in urban scenarios [6]. 

VI. CONCLUSION AND OUTLOOK 

This paper introduces a variety of concepts that facilitate 
the implementation of energy optimal urban speed profiles 
under dense traffic conditions. The analysis focuses on two 
major issues: (a) trajectory implementation, modification, and 
adaptation to traffic conditions, and (b) computability, and 
real-time trajectory generation. In the former, urban energy 
optimal platoons, piecewise linear trajectory approximations, 
filtered optimal speed trajectories, and reduced initial 
accelerations, were methods investigated. In the latter, 
considered solutions were closed-form approximations, and 
precomputed and parameterized trajectory sets. While all 
investigated approaches are effective, it can be concluded that 
urban platoons and precomputed/closed-form trajectories are 
among the most promising solutions.  

In general, the aspects detailed in this paper have the goal 
of reducing the complexity involved in generating energy-
optimal speed trajectories and making them more easily 
implementable while maintaining high energy savings.   
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Fig. 9. Energy savings obtained with the closed form approximation of 

optimal speed profiles. 


