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Abstract— Modern active distribution grids are 
characterized by the increasing penetration of distributed 
energy resources (DERs). The proper coordination and 
scheduling of a large numbers of these small-scale and spatially 
distributed DERs can only be achieved at the nexus of new 
technological approaches and policies. As such, this paper 
presents a distributed optimal power flow formulation for the 
distribution grid, applied to the problem of Volt-VAR 
optimization (VVO). First, we propose a convex model to 
describe the power physics of distribution grids of meshed 
topology and unbalanced structure, based on current injection 
and McCormick Envelopes. Second, we employ the distributed 
proximal atomic coordination (PAC) algorithm, which has 
several advantages over other distributed algorithms, including 
reduced local computational effort and improved privacy. We 
implement VVO by optimally coordinating DERs including PV 
smart inverters and demand response. Results from the IEEE-
34 bus network are presented, under different DER 
penetration scenarios and using different VVO objective 
functions. Our results show the need for DER coordination to 
achieve desired grid performance. Finally, we discuss the 
extension of such an optimal power flow formulation to the 
development of market derivatives to provide financial 
compensation to DERs providing grid services such as reactive 
power support and voltage support, within a local retail market 
framework. 

Keywords—smart grids, renewable energy integration, 
optimal power flow, distributed computation 

I. INTRODUCTION  
The modern distribution grid is characterized by the high 

penetration of distributed energy resources (DERs), which 
include distributed generation (DG), demand response (DR), 
and storage. These small-scale resources can provide various 
services to the grid, which include, but are not limited to, 
voltage support from clusters of DERs, reduced line 
congestion from better generation/load management, lower 
operating costs by using cheaper resources (ex. renewables), 
and demand flexibility by enabling DR throughout the 
distribution grid. 

The large majority of these DERs are small-scale 
resources located behind-the-meter. In 2017, they contributed 
to 46.4GW of capacity on the US grid – almost 15% of peak 
summer load – and are expected to grow to over 100GW by 
2023. The growth of these resources is led primarily by 
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distributed solar (rooftop PV), DR from smart home 
appliances, and electric vehicles and home charging 
infrastructure. [1] Being positioned behind-the-meter, 
however, means they are not visible to utilities or control 
authorities. They are also largely owned by different third-
party agents. These characteristics – the distributed nature, 
small scale, and third-party ownership – make the efficient 
integration of these resources into the grid a challenging and 
open research problem. 

Resource coordination is typically done by solving the 
optimal power flow (OPF) problem, which determines the 
optimal power injections to minimize a cost metric subject to 
constraints which correspond to the power physics of the 
grid. The power physics equations are nonconvex, and 
typical convexification strategies assume radial topology and 
balanced structure of the grid [2]–[4]; the distribution grid 
however, is highly unbalanced due to the line characteristics 
and presence of unbalanced loads, and can have both radial 
and meshed topologies [5]. Further, the large number of these 
spatially distribution agents can render centralized 
approaches intractable, especially for online and real-time 
applications. Recent research efforts look towards 
decentralized and distributed approaches for optimization 
and decision making, enabled by the increased presence of 
grid-edge intelligence, computing resources, and peer-to-peer 
(P2P) communication networks (see [6]–[9] for reviews). 
Thus, there is a need for distributed algorithms built upon 
improved power systems models, which make decisions 
using local information without the aid of a central authority. 

In this paper, we address these challenges by developing 
the necessary tools for distributed optimization in the 
distribution grid. The specific contributions are as follows: 

• We propose a convex relaxation of the OPF problem 
based on current injection (CI) and McCormick 
Envelopes, which we leverage to model unbalanced 
distribution grids of general topologies. We extend this 
convex model to a distributed OPF algorithm based on 
the proximal atomic coordination (PAC) method.  

• We implement distributed Volt-VAR optimization on the 
IEEE-34 node network, under different DER 
penetration. Results corroborate the need for distributed 
DER coordination to achieve desired grid performance, 
the need for DERs to provide reactive power support, 
and the need for financial compensation structures which 
price the locational and temporal variation of DER grid 
services. 



The paper is organized as follows. Section II introduces 
notation, III describes the relaxed convex OPF problem, and 
IV introduces the PAC algorithm and properties of linear 
convergence. Section V describes the VVO problem setup 
for the IEEE-34 node network, for which results and 
discussion are presented in Section VI, and conclusions in 
Section VII. 

II. NOTATION 
We use  and  to denote the real and imaginary 

components of a complex number ;   is the Hermitian of 
vector ; overbar  and underbar  denote the upper and 
lower limits of a variable ;  and  denote the real 
and imaginary components of a complex number. For a 
matrix  and  denote the columns and 
rows of matrix  belonging to the th partition of set  
respectively, and  to denote the entry at the th row and 

th column. We let  and  
represent the smallest, smallest non-zero, and largest 
eigenvalue of   respectively. 

We model the distribution network as an undirected 
graph of  with N nodes and M edges, where 

 is the set of nodes of the grid, and 
 is the set of edges. For a general 3-phase 

network, we denote each phase as  the set of phases. 
Each variable is thus a vector of 3 components, one for each 
phase . The 3-phase incidence matrix, , 
describes the network topology, with positive outgoing 
edges and negative incoming edges. The nodal quantities are 
the real and reactive power injection ), voltage , 
and current injection . The current through the line is 

. We use active sign convention, such that 
nodal injections are positive. Consider the nodal voltage, 
denoted as  for node  and phase . We model 
the magnetic coupling between phases  and  for a line 
between nodes  and , using the 3-phase impedance matrix 

. Each element  of  is 
. The system impedence 

matrix, Z, is the diagonal matrix composed of the line 
impedances. 

III. CURRENT INJECTION MODEL 
Denoting the column vector of line currents as , 

nodal voltages as , and nodal current injections as , the 
full current injection formulation (CI-OPF) is written as: 

 
 

(1a) 
  (1b) 
  (1c) 
  (1d) 
 

 
(1e) 

 
 

(1f) 

 
 

(1g) 

 
 

(1h) 
 

 
(1i) 

 
 

(1j) 
 

where  is the decision vector for 
the CI-OPF problem, (1b) describes Ohm’s law, and (1c)-
(1d) describe Kirchhoff’s Current Law. The objective 
function (1a) is the performance index to be minimized, 
which can be, for example, to minimize cost for power 
production or line losses.  

The OPF problem in (1) fully describes the power 
physics of an unbalanced network of either radial or meshed 
topology. However, constraints (1i)-(1j) render the problem 
nonconvex. We leverage convex relaxations, namely 
McCormick Envelopes (MCE) [10] to convert the bilinear 
terms to convex constraints. MCE denote a convex hull of a 
bilinear product  by utilizing the bounds on  and . 
We denote this as: 

 , 

and formally define it as: 

 

 

(2) 

We then introduce auxiliary variables  to 
describe the bilinear terms in (1i)-(1j), and the 
corresponding linear constraints as described in (2). To do 
so, we must introduce current bounds, as defined in (3). 

 
 (3a) 

 
 (3b) 

These are indirectly specified by (1e)-(1j), , 
and can be further calculated. The full relaxed CI model is 
then described by (1b)-(1h), (3a)-(3b), and the linear 
constraints for auxiliary variables as described in (2). 

IV. PROXIMAL ATOMIC COORDINATION ALGORITHM 
In this section, we introduce the distributed algorithm of 

[11], [12], for the sake of completeness and comprehension. 
We first consider the following centralized optimization 
problem:  

 

 
(4a) 

  (4b) 
where  is the decision vector,  is the objective 
function assumed to be a sum of separable functions, and 
matrix  represents the equality constraints, written in 
standard form. 

We then decompose the central problem of (4) into   
different coupled sub-optimization problems, which we call 
atomized problems, as in (5). The constraints and objective 
function are partitioned, with different decomposition 
profiles rendering different atomized formulations. 
Dependencies between each atom are treated by creating 
variable “copies”: if atom A relies on a variable  owned by 
atom C, it creates a copy of the variable, denoted as . 
Coordination constraints of the form  are 
introduced in atom A, which drive the variable copy to the 
true value, through communication with atom C. These can 
be compactly represented by constraint  for an 
atom .  
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              (5c) 

A. Algorithm Specifications 
We first form the atomic Lagrangian function for (5): 
 

 

 

 (6) 
We can then apply the prox-linear approach of [13] to (6), 

to ensure parallel computation of each primal step, and 
obtain the PAC algorithm: 
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B. Convergence Results 
We make the following assumptions on the structure of 

the central and atomized formulations, 

where , , and 
: 

• Each  is a closed, convex and proper (CCP) 
function with , and is differentiable, -
strongly convex and -strongly smooth. 

• There exists a non-trivial optimal solution to the central 
problem (4), . The optimal atomized solution  is 
related to  via a projection . 

• Let the PAC parameters satisfy:  

 
If these assumptions hold, and the PAC parameters satisfy 

 and  for , and let:  

, 
represent the PAC trajectory of (7)-(13) under zero 
initialization. Then there exists a unique optimal atomized 
solution such that, for all : 

 
and linear convergence with: 

 
where: 

 

 
(14) 

with  satisfying: 

. 
The proof and additional details are in [11], [12]. 

V. APPLICATION TO VOLT-VAR OPTIMIZATION 
We apply the distributed OPF developed using CI and 

PAC to the problem of VVO in distribution girds with high 
penetration of DERs. The highly temporal and spatial nature 
of DERs suggests a need for finer grain control of the voltage 
profile, which cannot be met through the use of traditional 
voltage regulators and capacitor banks. We assume 
protection schemes are well designed and will correct the 
system if a fault event occurs. We model the IEEE-34 bus 
network (see Figure 1), a 3-phase unbalanced distribution 
feeder. Switches are assumed in their normal positions, and 
line loads are converted to spot loads by equally distributing 
them between the connecting nodes. The capacitor banks are 
modelled as negative reactive power generators, with 
continuous operating range between 0 and full capacity. We 
modify the network by adding DERs at different nodes.  

A. Modeling DERs 
We perform VVO at the secondary feeder, where each 

node is a single residential unit. We model three types of 
DERs: DR units, DGs, and prosumers, each detailed below. 

1) Demand Response: Flexible loads are modelled with 
different demand response percentages, denoted as , 
where  and ,  by 
active sign convention. For inflexible loads, . 
We assume the reactive power of all consumers are fixed, 

. 
2) Distributed Generation: Distributed generators are 

rooftop PV units rated at 4-10kW capacity, denoted by , 
which is the typical range for residential PV in the US. 
Hourly generation forecasts were obtained from the NREL 
System Advisory Model (SAM) tool, using the small scale 
distributed residential PV model, queried for May 14 [14]. 
The generation data 2  is normalized to render generation 
profile  to be used for all PV units throughout the 
network; we assume the solar irradiance over the entire 
network is equal. We assume all renewable generation can be 
curtailed, and that all units are equipped with smart inverters 
capable of adjusting power factor3. We do not consider 
storage in this work. The full model for a PV unit at node j is:  
 

 (15a) 
  (15b) 

                                                        
2 We use data from Phoenix, AZ, using the SunPower SPR-X21-335 
module, and a single inverter (SMA America, SB3800TL-US-22, 240V). 
The DC to AC ratio is set to the default of 1.2. 
3 Rule 21 in CAISO requires that all distributed generators be equipped 
with smart inverters, as of 2014. 



 

 
 
 
 
 
 
 

3) Prosumers: Prosumers are nodes where both load and 
generation are present. To model each device properly, we 
must introduce additional variables representing the load 
and generation powers4: 

  (16a) 
  (16b) 
 

 (16c) 

 
 (16d) 

The PV generator located at a prosumer node  will be 
represented by the equations in (15), with all  and  

variables replaced by the  and . Similarly, loads 
located at prosumer node  (including demand response) will 
replace  and  variables with  and but with 

 and .	

B. Simulation Setup 
We run simulations for 24 hours with nodal loads 

varying as per profiles  and  for real and reactive 
power respectively. The baseline time-dependent load ratio 

 varies according to the ISO-NE report of total 
recorded electricity demand for each five-minute interval of 
May 14, 2019 [15]. This ratio is perturbed to obtain the ratio 
per node , where  with 

, and the resulting profile is smoothed. The 
same is done for reactive power . We select  and 

 to ensure  and  load profiles are not identical. 
1) Test Cases: To test the performance of the CI model 

and PAC algorithm, we consider varying penetration of 
DERs through the four cases below: 

• Case A: [Baseline] time-varying loads and shunt 
capacitors with IEEE-34 configuration 

• Case B: [DR] Baseline case with DR present in the grid 

• Case C: [PV] Baseline case with PV units with smart 
inverters and adjustable power factor 

• Case D: [Combination] Baseline case with DR and PV 
To compactly represent the different DER scenarios, we 

make use of a case notation. For cases A, B, and C, the 
scenarios follow the notation X_XX_XX as below. For case 
B, the low DR case (20% penetration) takes all units with 
10% − 30% curtailable load at all hours of the day. In the 
high DR case (50% penetration), all units have 50% − 80% 
curtailable load at all hours of the day.  

• X: {A,B,C} Case code 

                                                        
4 For these variables, we do not use active sign convention 

• XX: {20,40,50,60} penetration of the resource through 
network as % of nodes with specific DER capabilities 

• XX: {1,95,90,80} For case C: minimum pf setting of all 
PV units (with 1 for fixed unity pf) 

The scenarios for case D follow the notation D_XX_XX 
as below, with all PV units having minimum pf of 0.9. All 
DR units have 10%−30% curtailable load at all hours of the 
day5. 

• XX: {40,60} penetration of PV units through network 
as % of nodes with PV 

• XX: {20,50} penetration of DR through network as % 
of nodes with DR capabilities 

2) Objective Function: We consider three different 
objective functions to achieve VVO in the distribution grid: 

• I. Regulate voltage about a prior set-point: 

 
• II. Minimize line losses:  

 
• III. Minimize feeder power import: 

 

For function I,  and  are the desired setpoints, 
which for our case study we take  and 

. We note that node  which is 
the point of common coupling (PCC) to the transmission 
grid is treated as a slack node, with  and 

. For function II, the resistance 
, and branch currents  for both 

real and imaginary components, to account for the magnetic 
interaction between phase  and . The squared operator 
acts element-wise, and the inner summation acts as a 
mapping to sum the elements together. 

VI. RESULTS AND DISCUSSION 
In this section we present the simulation results of VVO 

on the different test cases. All simulations were performed 
on a 2.3 GHz Intel Core i5 machine using MATLAB, with 
optimization problems being setup using the YALMIP 
interface [17], and solved directly with Gurobi Optimizer. 

The parameters of the PAC algorithm were tuned to 
guarantee algorithm convergence (see [11], [12] for details). 

A. Voltage Results 
The resulting voltage bounds are presented in Fig. 2 for 

each of the test cases. The voltage bounds are calculated by 
finding the minimum and maximum voltage across all nodes 
and all time (24 hour simulation), and the average voltage 
(denoted by the dot on the range) is similarly calculated 
across all nodes and time. The simulations specify very loose  

                                                        
5 A demand response potential survey for Bonneville Power Administration 
[16] indicated achievable DR levels of 15% in winter and 64% in summer, 
with 10% DR easily achievable among public utilities in RTOs. The report 
also suggests small utilities can achieve up to DR potentials of 50% peak 
load. We simulate 10%-30% capabilities to test future extreme DER 
penetration scenarios. 

 
Fig. 1: IEEE-34 node network topology, with node 1 the PCC 
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voltage bounds of pu, to ensure the 
optimization problem is always feasible. Through the 
coordination of DERs, the lower voltage bound should be 
pushed into the acceptable operating range of ±10%, which 
corresponds to pu, as denoted in the figure, 
with narrower operating bounds and averages closer to 1pu 
being preferred6. 

The baseline case (Case A, in grey) clearly shows that the 
network exhibits low voltage problems despite having shunt 
capacitors, with the minimum voltage below 0.9pu, and an 
average below 0.94pu. The results for Case B (in blue) show 
that the use of DR can boost grid voltages by reducing the 
total network load. However, a substantial voltage increase is 
only achieved in Case B 50, where DR has very high 
penetrations and upwards of 50%-80% of the load can be 
curtailed. This is an unrealistic level of curtailable load and 
suggests the need for other resources. The results for Case C 
(in yellow) show minimal improvement from the baseline 
case, with the average only marginally improved but still 
below the acceptable limits in North America. This can be 
explained by the variable nature of solar generation, where 
solar power is not available at all hours of the day. The 
simulation data has nonzero generation between hours 7 and 
20, while the average load profile shows the maximum load 
occurring between hours 18 and 22. Thus, the low voltage 
issues in the network caused by the high evening demand 
cannot be addressed through the use of PV inverters. Finally, 
the results for Case D show how both DR and PV with smart 
inverters can be leveraged to improve grid voltages, with 
reasonable DER levels. The DR units increase the minimum 
voltage and can be used during all hours of the day; while the 
PV units boost the average voltage, primarily through 
reactive power support. 

B. Resource Utilization 
To better understand the spatial-temporal use of the 

different DERs, we consider resource utilization factors. 
These are calculated as below, with the variables for 
prosumers being changed for DR and PV utilization to  

and  respectively. 

                                                        
6 Voltage standards detailing the allowable deviation from nominal voltage 
under normal grid conditions vary globally. North America follows ANSI 
C84.1 which allows ±5% deviation, while Europe follows IEC and 
European EN 50160 which allows ±10% deviation. We consider the 
European voltage bounds as they provide more flexibility in operations. 

• DR Utilization:   

• PV Utilization:   

• Power Factor:   
The results are shown as heat maps in Fig. 3 for Cases B 

and C, and Fig. 4 for Case D. The x-axis denotes the hour of 
the day (1 thru 24). The y-axis identifies the location of the 
resource by node number. For prosumers, the node number is 
annotated with ‘G’ and ‘L’ in subscripts, to indicate 
generation and load at the node respectively. DR utilization is 
shown from white to red (-1 to 0) and PV utilization is shown 
from white to blue (0 to 1), with darker colours 
corresponding to higher resource utilization. Power factor is 
measured from the minimum allowable to unity. The ‘NaN’ 
value indicates the resource was not available at the time. 

For Case B (Fig. 3a), the striking red across the entire 
map shows that DR units are used at full capacity at all hours 
of the day, to boost the grid voltage by reducing network 
load, as can be expected from the voltage results in Fig. 2. 
For Case C, results are shown for low penetration of PV  
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
     (a) D_40_20, Obj. I,II        (b) D_40_20, Obj. III   (c) D_60_50, Obj. III 
 

 
     (d) D_40_20, Obj. I,II        (e) D_40_20, Obj. III   (f) D_60_50, Obj. III 
 
Fig. 4: Resource utilization (top) and power factor (bottom) heat maps for Case D 

 
Fig. 2: Results for the IEEE-34 node network with Objective I and 
varying test cases. The bars indicate the range of voltage, and the dot 
indicates the average voltage in the network over space and time. 

 

 
(a) B_20, Obj. I,II     (b) C_40_1, Obj. I,II 
 

 
(c) C_60_90, Obj. I,II     (d) C_60_90, Obj. I,III 

 
Fig. 3: Resource utilization (a-c) and power factor (d) heat maps, Cases B and C 



(40%) with fixed unity power factor (Fig. 3b), and a high 
penetration of PV (60%) with a minimum power factor of 0.9 
(Fig. 3c and 3d). For fixed unity power factor case, the PV 
generation is mostly curtailed, while for variable power 
factor case the PV generation is never curtailed, and is used 
most frequently to supply reactive power. This is indicated 
by the lighter blue squares in the pf map (Fig. 3d). This 
shows the need for DERs capable of reactive power support, 
even in networks with traditional resources like capacitor 
banks and on-load tap changers (OLTC) transformers. The 
maps for Case D compare the use of different objective 
functions in Fig. 4a,4d and Fig. 4b,4e – all resources are 
being utilized at near full capacity, but the different objective 
functions render different resource utilization. This shows the 
need for assessing the requirements of each network and 
selecting tailored objectives to conduct VVO. A comparison 
of Fig. 4b,4e and Fig. 4c,4f, which use the same objective 
function, shows how resource utilization changes with DER 
penetration – in the second case, some PV generation is 
curtailed and some DR units are not leveraged; further, 
generators at nodes 7 and 8 provide mostly real power while 
other units provide mostly reactive power. 

C. Future Work: Extensions to Distribution-Level Markets 
The results presented here clearly show that appropriate 

coordination of DERs can achieve VVO in the distribution 
grid. These resources are providing grid services in the form 
of load curtailment, energy exports, and power factor 
modulation. For providing these services, DERs must be 
financially compensated. Existing policies for DER 
compensation (including retail DR programs and net energy 
metering) fall short of yielding efficient investment and 
operations of distribution systems as they do not typically 
price the locational and temporal variation in the services 
DERs provide - these variations are clearly shown in the 
resource utilization maps and power factor maps of (Fig. 3, 
4). Further, programs which compensate DERs for voltage 
support or reactive power support do not exist. This suggests 
the need for new market derivatives. 

Despite increased DER participation at the wholesale 
level (such as through FERC Order 841 for storage, Orders 
719 and 745 for DR, and interconnection procedures such as 
WDAT in California), as the number of small-scale DERs in 
the distribution grid grows, the WEM alone may not suffice 
in realizing efficient and reliable power delivery. Rather, a 
retail market which oversees the scheduling and 
compensation of DERs is highly necessary. In [18], 
transactive energy schemes are at the core of a retail market 
coordinated by a Distribution System Operator. The 
proposed retail market leverages the PAC algorithm to solve 
the optimal power flow, with its solution serving as the 
schedule and retail prices for DERs in an energy market. 

We propose the use of the distributed CI model based on 
the PAC algorithm to extend the retail market in [18]. By 
fully describing the power physics for unbalanced networks, 
appropriate market derivates to achieve VVO through the 
coordination of DERs can be developed. This will be 
analyzed in future work. Further, there is a need for a cyber 
framework upon which these DERs can be coordinated – we 
propose a service-oriented broker architecture (SOBA) that 
conceptualizes such a framework in [19]. By treating the grid 
as a multiagent system, the DERs can be coordinated by 
system operators through service requests, using such 
structures as the retail market. Additional future work 
includes the deployment of the extended retail market on a 
cyber-physical testbed, comprised of the SOBA platform. 

VII. CONCLUDING REMARKS 
In this work, we achieve distributed VVO in unbalanced 

distribution grids, through the optimal coordination of 
DERs, namely DR and rooftop PV with smart inverters. We 
leverage the recently proposed PAC algorithm to solve the 
convex CI power flow model, and present simulation results 
for the IEEE-34 node network. The results clearly show that 
DERs can be used to achieve VVO, through the provision of 
spatial and temporally varying grid services.  
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