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Abstract—Electric sector emissions represent a large and 

growing fraction of anthropogenic emissions and should be 

a strong focus for environmental policy measures. In electric 

grids with significant penetrations of renewables, the 

emissions intensity of electricity varies in space and time.  

To encourage and guide decarbonization efforts, we need 

better tools to monitor the emissions embodied in electricity 

consumption, production and exchanges. Previous efforts 

resulted in a dataset for 2016 electricity and emissions at the 

hourly and balancing-area levels in the US electricity 

system. We now provide tools to make such datasets 

available much faster, by using an approximation for 

released emissions and an algorithm to automate data 

cleaning. As an example of how this type of new, detailed 

information on the electricity system can be used, we assess 

the current impacts of high penetrations of renewables on 

other grid components in the US. We demonstrate how 

dispatchable generation and electricity exchanges play an 

essential role in integrating fluctuating wind and solar 

generation. 
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I. INTRODUCTION 

As efforts to curb greenhouse gas emissions intensify, 
monitoring decarbonization progress and tracking the 
impacts of different policy actions in a timely manner will be 
critical to achieve climate goals. New tools are needed to 
measure and analyze emissions from different sectors of our 
economies at increased granularity in space and in time. 

The electric sector should be a prime target for these 
efforts, since it represents a large and growing share of man-
made emissions. Emissions from electricity and heat 
generation represented 41% of the world’s 32.8 Gt of carbon 
dioxide (CO2) emissions from fuel combustion in 2017 [1]. 
CO2 emissions from fuel combustion can be expected to 
represent 58-69% of the world’s total greenhouse gas (GHG) 
emissions (including land use; data from [2] using 100-year 
Global Warming Potential for methane and nitrous oxide). In 
the United States (US), electricity represented 28% of GHG 
emissions in 2016 [3]. 

Large-scale deployment of low-carbon and renewable 
electricity is increasingly advocated as an effective 
decarbonization pathway for electricity systems. The 
variability of wind and solar electric power is a concern 

when they represent large fractions of the generation mix and 
is now better understood [4]. The integration costs for wind 
and solar will ultimately depend on how well conventional 
generators can adapt their operational strategies and respond 
to fluctuations in renewable output. 

The decarbonization benefits provided by renewable 
generation should be assessed by analyzing their impact on 
released emissions. A common tool to analyze emissions in 
the electric sector is the emissions factor (EF), that quantifies 
the mass of CO2 that is released to the atmosphere per unit 
electrical energy. By this metric, coal is roughly twice dirtier 
than gas, which is ten times dirtier than other generation 
technologies (using life-cycle analysis estimates) [5]. From 
2001 to 2017, the carbon intensity of the United States (US) 
electricity system decreased by 30% [6] (using direct 
emissions estimates) as gas and renewables displaced coal in 
the generation mix. 

A growing body of work is concerned with 
understanding how EFs vary by location, season or time of 
day [7, 8]. To better capture the impact of environmental 
measures, the use of marginal EFs has been advocated as a 
tool to measure the impact of short [9, 10] or long-term [11] 
policy decisions. EFs can use production or consumption of 
electricity as the accounting basis [12-14]; but linking 
changes in production and consumption at different locations 
of electricity grids, effectively large interconnected 
machines, is difficult. 

Previous work by the same authors developed a 
methodology to compute hourly consumption- and 
production-based emissions in the US electricity system [15] 
and applied it to 2016 data for the sixty-six continental 
Balancing Authorities (BAs) in the US. This work combined 
data from three publicly available sources on electricity and 
emissions using a fully coupled economic multi-regional 
input-output (MRIO) model of the electricity system, 
adapting previous work to quantify the emissions embodied 
in the trade of goods and services between countries [16, 17]. 

In this framework, pollution is embodied in generated 
electricity and subsequently flows through the electricity 
network. Produced emissions are defined by the 
administrative territory in which they are physically emitted. 
Consumption-based emissions are defined by the 
administrative territory in which electricity is consumed, and 
we refer to them as “consumed” emissions. We similarly 
refer to “traded” emissions as the emissions embodied in 
hourly electricity exchanges. 
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In this work, we now provide the tools to perform similar 
analyses in near real-time and to continuously monitor 
emissions rates in the US electricity system, which is 
responsible for close to a third of the carbon dioxide that is 
released to the atmosphere each year in the US. Emissions 
estimates from this work rely on electric system operating 
data, publicly available with a time lag of hours to days, and 
technology-specific emissions factors. 

This work uses a methodology to automatically reconcile 
inconsistent data on electricity generation, consumption and 
exchanges. We also depart from [15] in the data source that 
is used to compute produced emissions (arguably less 
precise, but available in real-time as opposed to quarterly). 
The raw and cleaned electricity data as well as the 
consumption- and production-based emissions from this 
work will be streamed to a publicly available data collection 
service. 

II. DATA AND METHODS 

In this work, we leverage publicly available data from the 
US Energy Information Administration (EIA) [19]. This 
dataset provides electric system operating data on generation, 
consumption and exchanges of electricity for every hour and 
at the level of the balancing area (BA). We argue that 
tracking emissions at the BA level is natural because they 
correspond to the physical organization of the electricity 
system, where control-room operators must continually 
monitor the state of the electric grid to ensure that supply can 
meet demand and line flows remain technically acceptable. 
In the remainder of this paper, BAs will be referred to as 
“regions” to simplify language. A full table of abbreviations 
for the different regions in the US can be found in the 
Supplemental Information document of [15]. 

Since July of 2018, the EIA online data facility also 
releases the hourly generation mix in each region, which 
allows us to estimate hourly emissions released by using 
technology-specific emissions factors. Specifically, if we call 
fs the emissions factor for generation source s and Pr,s the 
output from generation source s in region r, we compute the 
emissions produced in region r as: 

For the results presented in this paper, we use the most 
recently available life-cycle analysis estimates from the 
IPCC [5] as the technology-specific emissions factors. In 
contrast, our previous work [15] used power-plant-level 
measurements of emissions to estimate hourly emissions, 
available from the US Environmental Protection Agency’s 
(EPA) Continuous Emissions Monitoring Systems (CEMS) 
[20]. Although they provide invaluable information on the 
operation of US electricity generation units, the CEMS data 
are only released once every quarter. Additionally, not all 
power plants report to this database. In the California 
Independent System Operator (CISO) for instance, we found 
that 30% of the 2016 emissions – mostly those 
corresponding to Combined Heat and Power (CHP) plants – 
were not reported. To infer missing emissions, our previous 
work used a more complete bi-annual emissions inventory by 
the US EPA [21] as well as a significant amount of manual 
data cleaning. 

Directly using the EIA electric system operating data can 
also be challenging. As confirmed by the EIA documentation 
[19], there are numerous inconsistencies in the data (e.g. 
interchange reported by region r1 to or from region r2 does 
not match the corresponding report by region r2). We have 
found these inconsistencies are particularly problematic 
when computing consumption-based emissions because the 
MRIO framework relies on solving linear systems. When the 
data supplied to our solver is inconsistent, the linear system 
is often ill-conditioned and solving it is prone to numerical 
instability. 

In our previous work [15], significant efforts were 
devoted to manual data cleaning to avoid issues for both the 
electricity and emissions data sources. In the context of this 
work, data cleaning procedures were fully automated so that 
the electricity and emissions dataset we release can be 
updated on an hourly basis. Our methodology relies on 
solving on optimization program to compute minimal 
adjustments to the data such that they are physically 
consistent and will be developed in more detail in the full 
version of this paper. Although these methods were 
developed with our emissions tracking application in mind, 
we believe they will benefit other consumers of electric 
system operating data as well, e.g. for researchers attempting 
to create realistic simulations of electricity systems in the 
context of capacity expansion modeling. 

We follow the same procedure as in [15] to compute 
consumption-based emissions. Following the EIA API’s 
convention, IDr1,r2 corresponds to the electricity sent from r1 
to r2, is negative for imports and positive for exports. Imports 
from r1 into r2 are ur1,r2 = -min (-IDr1,r2, 0) and we write the 
following linear system to compute the consumption-based 
emissions factor in region r, xr: 

 

Gr corresponds to total generation and Ur to the total imports 

for region r, Ur = r2 ur,r2. This equation corresponds to 
equation (4) from [15] and provides valuable information on 
how embodied carbon emissions propagate through the 
electric grid, from production to consumption. We note that 
(2) accounts for transshipments of electricity and emissions 
across regions and that the MRIO system we consider is fully 
coupled. 

III. RESULTS 

A. Continuously monitoring electricity and emissions 

In Fig 1., we show maps for the embodied carbon 
consumed and exchanged by the different regions in the US 
electricity system, that compare average hourly daytime and 
nighttime behavior in the spring of 2019. The western 
interconnect consumed 13% less carbon during daytime than 
during nighttime in the spring of 2019, while the eastern 
interconnect consumed 31% more. Nighttime wind power 
lowers the nighttime carbon intensity of Texas (ERCO) and 
the Southwest Power Pool (SWPP), while daytime solar 
lowers the daytime carbon intensity of the California regions. 
Abundant hydroelectric resources are behind the clean power 
that is produced and exported from the northwest of the US 
system. Exchanges play a crucial role in the western 



Fig. 1. Average carbon consumed and exchanged by the different regions in the US electricity system in the spring of 2019. Nighttime is defined as 
11pm-5am EST or 8pm-2am PST. Daytime is defined as 12pm-6pm EST or 9am-3pm PST. 

 

 

 

 

interconnection, while they play a much weaker role in the 
eastern US grid. 

The carbon intensity of consumed electricity varies in 
time as well as in space, as highlighted by Fig. 2, where we 
show profiles for the median electricity generation from the 
dominating renewable energy resource for a region and the 
corresponding profile for the median consumption-based 
carbon intensity, for different time aggregations. Availability 

patterns for hydroelectric power are typically seasonal, as 
can be seen in the Bonneville Power Administration 
Territory (BPAT), where hydroelectric production typically 
peaks in the spring. Solar generation displays strong daily 
patterns, as can be seen in the California Independent System 
Operator (CISO) data. The effect is strongest in the spring, 
when solar generation is already high and electricity demand 
is not as high as in the summer. In the ERCO, wind 
generation is typically stronger in the nighttime. The 



Fig. 3. Renewables on the rise. Generation mixes for selected 
regions in the US (data from eGRID [21]). 

 

 

 

 

Fig. 2. In highly renewable grids, the carbon intensity of electricity 
consumed varies in time. Median hourly renewable 
generation and median hourly consumption-based carbon 
intensity for three regions. 

 

 

 

Profile plots for wind, solar and hydro. Show profiles 
for renewable generation and consumption-based carbon 
intensity. For wind and solar these are daily in the month 
with the strongest generaiton, for hydro monthly over the 
course of the year. 

Two columns, three rows. Two columns are 
generation on one side and consumption-based carbon 
intensity on the other? 

 

availability of wind generation can also vary tremendously 
from week to week. 

These variations in electricity system carbon intensity are 
the direct result of increasing penetrations of renewables and 
can be expected to grow as efforts to decarbonize electricity 
generation continue. As we will show in section III. C., 
however, other generation assets must now routinely ramp 
production up and down to accommodate fluctuations in 
renewable output, particularly from solar and wind, 
providing a supporting role that will be difficult to replace. 

B. Renewables and gas continue gaining ground on coal 

Because of the large additions in renewable generation 
capacity in the past few years, the share of electricity 
generation has been steadily growing, as shown in Fig. 3, 
where data is provided from 2014 to 2018. Overall in the US 
system, the weight of coal dropped from 39% to 28% during 
that time interval. This was mostly to the benefit of gas-fired 
generators (28% to 35%), whose carbon emissions per unit 
power produced are roughly half those of coal plants. The 
growth in renewable generation is mostly attributable to 
wind (4.4% to 6.5%) and a lesser extent solar (0.4% to 

1.5%), while the shares of hydroelectric and nuclear 
remained stable. Wind generation grew fastest in the ERCO 
and in the SWPP, from 10% to 17% and 13% to 24%, 
respectively. In both regions, this was at the expense of coal. 
In the CISO, solar now accounts for 16% of local generation 
(but only 12% of served electricity demand; the CISO 
imports a third of its electricity annually). 

C. Making way for renewables: the integration challenge 

To evaluate how large-scale renewable generation 
currently impacts other generating units in the US electricity 
system, we compute the weekly correlation between the 
generation from the dominating renewable resource and 
other grid mix components (including interchange) for three 
different regions, using hourly data from July 2018 to the 
present. Summary results from this analysis are shown in 
Fig. 4. In the left column, we also plot the weekly mean 
generation for the dominating renewable resource (in dashed 
black, normalized by the maximum).  

In the Southwest Power Pool (SWPP), wind generation 
represented 25% of the generation mix and weekly averaged 
hourly wind generation peaked at 11.8 GW in April. Coal 
(34%) and natural gas (24%) were the two other major 
sources of electricity, while net exports were a much smaller 
fraction of generation (1%). In the Bonneville Power 
Administration Territory (BPAT), hydroelectricity 
represented 65% of the generation mix, and the weekly 
average of hourly hydroelectric generation peaked at 11.7 
GW in April, roughly double the average September output. 
BPAT also had significant wind generation (8%) and was a 
net exporter of a large fraction of the power it produced 
(58%). BPAT is particularly interesting in that it 
simultaneously imports and exports significant amounts of 
power (exports were 86% of total generation while imports 
were 28%). In the CISO, solar generation represented 16% 
of the generation mix and the weekly average of hourly solar 
generation peaked at 4.5 GW in June (if we restrict data to 
the middle of the day, weekly averaged hourly generation 
peaked at 10.4 GW). Winter solar generation was roughly 
half of the summer output. The CISO imports a large fraction 
of the power it produces (25% of demand). Note that 
interchange is treated the same for all three regions and is 
positive for exports and negative for imports. 

Nuclear generation is mostly run as a baseload resource 
in the US electricity system and is therefore uncorrelated 
with fluctuations in renewable generation sources, which is 
why nuclear is not considered in Fig. 4. 



Fig. 4. Weekly averages for hourly correlation between the dominating renewable resource and other generation sources (left) and selected interchange 
routes (right), for three regions in the US electricity system. In the SWPP, data before for the first ten weeks is not trusted. 

 

In the SWPP, wind generation drives higher exports. 
Coal and gas generation is scheduled to accommodate 
fluctuations in wind power generation and they are 
negatively correlated. Wind also displays strong negative 
correlation with coal and gas in the ERCO. The same is not 
true for exports, that are much smaller in the ERCO. In the 
MISO, similar negative correlations can also be found, but 
the effect is less pronounced, which is probably because 
wind represents a much smaller fraction of the generation 
mix. 

In the BPAT, hydroelectric generation displays strong 
positive correlations with exports, and to a lesser extent, is 
negatively correlated with wind generation. A possible 
interpretation for this is that some hydroelectric generation is 
run to accommodate the fluctuations in wind generation, but 
the rest is run independently. This is supported by 
normalizing quantities by total hourly generation: the 
negative correlation between fractions of wind and fractions 
of hydro becomes much stronger. 

In the CISO, increased solar generation drives higher 
exports (or equivalently, fewer imports). Similarly, natural 
gas and hydroelectric resources are also scheduled to support 
solar by reacting to fluctuations and therefore display strong 
negative hourly correlations with solar generation for most 
weeks of the year. However, in summer, gas and hydro 
perhaps surprisingly lose most of their correlation with solar. 
One possible explanation for this is that the summer is also a 
period when wind generation is stronger during the 
nighttime, which reduces the integration burden for gas and 
hydro in those months. This can be seen in the negative 
correlations between solar and wind in summer. A second, 
less immediate explanation stems from the fact that daytime 
demand is much stronger in California in summer, driven by 
high temperatures. The weekly correlations between the 

same quantities normalized by demand is also weaker in 
summer than in winter, but the seasonal effect isn’t as strong 
as for the unnormalized generation values. This can be 
explained by the different effects that are at play in the 
morning and in the evening. In the summer, during the 
morning solar ramp, gas and hydro generation must also 
increase to accommodate high demand. The output from all 
three generation sources is positively correlated. Relative to 
demand, however, solar increases while gas and hydro 
decrease. When the sun sets on the other hand, demand 
typically stays strong, and gas and hydro facilities must 
greatly increase their output to match the sudden decrease in 
solar generation. Fig. 5 highlights these morning and evening 
effects. 

In the second column of Fig 4., we show the weekly 
correlation between generation from the dominating 
renewable resource and specific electricity exchange routes. 
We highlight those lines that have average absolute 
correlations above 60%. Four of the CISO connections are 
strongly correlated with solar generation. In the spring and 
winter, the connection with the Imperial Irrigation District 
(IID) is negatively correlated with solar, which can be 
explained by IID’s strong solar generation. The same is true 
for the connection between the BPAT and Chelan County 
PUD (CHPD), that generates significant amounts from 
hydroelectricity. Interestingly, none of the SWPP 
connections seem to play a buffer role for wind, although the 
aggregate formed by the connections clearly does. 

IV. DISCUSSION 

The US electricity system is slowly decarbonizing. 
Although much of the progress of the recent decade is 
attributable to gas-fired generators replacing traditional coal-
fired US power plants, renewables have also steadily been 



Fig. 5. Morning and evening correlation of solar with gas and 
hydro in the CISO. 

 

 gaining ground. Our results show how the carbon intensity of 
consumed electricity varies in time and in space in electric 
grids with significant penetrations of renewable generation. 
Continuously tracking embodied emissions flows will be 
critical to monitor decarbonization progress and direct 
climate policy to when, and where, it is most useful. 

Large-scale renewables are now an integral part of daily 
operations throughout the US power grid. Precise 
characterizations of the stress that renewable generation 
places on conventional generators at different levels of 
renewable penetration are needed. Our results show that 
other generation units, most often gas- or coal-fired, respond 
to fluctuations from renewables and play an essential role 
that will be difficult to replace. Different effects drive the 
operating schedules of generators. Untangling those effects 
can be complex. Electricity exchanges are also play found to 
play a key role in renewables integration. 

As installed capacity for renewables grows, it is likely 
electricity exchanges will too. Tracking tools like those that 
we provide to monitor electricity and carbon flows will 
become increasingly useful to decision makers designing 
environmental policy measures. 

Performing in depth analyses and characterizations of the 
way the different electricity grids are adapting their 
operations to renewables will also be critical to push the 
decarbonization frontier. Such analyses will provide valuable 
insights to grids that are exploring decarbonization pathways 
or have not yet committed to a climate strategy, as well as to 
regions of the world where electricity grids have yet to be 
built. 

Although arguably less precise than the method that was 
used in our previous work [15], the method we used in this 
paper allows us to provide estimates much faster than was 
previously possible. Additionally, it would not be difficult to 
refine the calculation using more precise historical data, e.g. 
by using region-level technology-specific emissions factors – 
these could be updated on a quarterly basis using data from 
the US EPA’s CEMS [20], one of the three data sources that 
was used in [15]. The automated data cleaning procedure that 
we designed could also be improved, for instance by using a 
dynamic model of the US electricity system together with 
signal processing techniques such as Kalman filtering. 
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