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Abstract—Currently, prediction of trip-based electricity 

consumption of electric buses (EBs) has become an important 

prerequisite for the deployment of large-scale electric bus 

fleets and the location of the charging infrastructures. 

Previous state-of-the-art approaches to estimate the 

electricity consumption focus on making rough electricity 

consumption assumptions or building physics-based 

electricity consumption model. This paper constructed a 

neural network model to predict the trip-based electricity 

consumption of EBs and six influencing factors were taken 

as input variables. Further, sensitivity analyses were 

performed to investigate how these factors influence the 

consumption results. This model was implemented and 

validated on real-world electric bus data from a five-month 

consecutive collection in Shenzhen, China, comprising 1024 

EBs. The experiment demonstrated the predictive 

effectiveness of this model and the results from sensitivity 

analyses show that trip length is the key factor to determine 

the consumption, but other factors average travel speed, the 

number of bus stops and traffic lights, direction, time 

parameters also have different level of impacts on the results.  

Keywords—electric bus, electricity consumption, neural 

network, big data 

I. INTRODUCTION 

Currently, in order to encourage the transportation 
electrification, increasing cities are replacing diesel-powered 
public buses with electric buses, this is because electric buses 
(EBs) are classified as zero emission vehicles and being more 
energy efficient in urban area [1]. A number of advantages of 
EBs have been listed, including quiet, comfortable due to the 
lack of motor vibrations, braking energy recovery, being more 
energy efficient than diesel-powered buses, and being locally 
emission-free due to the fossil fuel savings and the reduction 
of green house gases (GHG) emissions [2-4]. However, in 
order to enlarge the application of electric bus, estimation of 
the trip-based electricity consumption has become crucial for 
planning and deployment of large-scale electric bus fleets, 
calculation of operating costs, and selection of the right 
battery capacity [5].  

In literature, there has been a long line of studies in the 
calculation of electricity consumption of EBs. Existing studies 
mostly use two approaches to determine the electricity 
consumption of EBs for terminus-to-terminus trips. The first 
is assuming the linear relationship between the electricity 
consumption of EBs and their trip length. Wang et al. assumed 
that the electricity consumption of EBs is proportional to the 
trip length in order to simplify the problem about scheduling 
the electric bus to be recharged [6]. Xylia et al. considered 
electricity consumption rate of EBs as a fixed value, which is 
1.5 kWh/km in the case study of electric bus network in 
Stockholm, Sweden in order to simplify the optimization of 
the distribution of charging infrastructure [7]. Similarly, Paul 
and Yamada also used a fixed average electricity consumption 
rate of 1.41 kWh/km to calculate the EB’s energy demand [8]. 
Although this approach is very simple to estimate the 
electricity consumption, it does not take into account the 
impact of other influencing factors (e.g. route characteristics) 
on electricity consumption. Hence, there would be a less 
accurate electricity consumption estimation through using this 
approach. 

The second is building physics-based electricity 
consumption models. Marc et al. proposed a longitudinal 
dynamics model where low-resolution data including the 
arrival and departure time of the buses at each bus stop were 
collected [5]. Wu et al. presented an analytical EV power 
estimation model on the basis of the analysis of the 
relationship among the EV’s power, the velocity, the 
acceleration, etc. And then the instantaneous power could be 
obtained and trip electricity consumption could be calculated 
[9]. Cedric et al. constructed three electricity consumption 
calculation models through using aggregated values of the 
kinematic parameters of trips including driving distance, 
travel time, temperature, acceleration data, and so on, based 
on the vehicle dynamics physical model and multiple linear 
regression [10]. Jari et al. developed an equation-based model 
to predict the real-world electricity consumption of EBs and 
study the nature and impact of various influencing factors [11]. 
The latter methods have more accurate prediction results of 
the electricity consumption of EBs than the former ones, as 
these models consider the inherent physical characteristics of 



the electricity consumption of EBs rather than assuming the 
electricity consumption rate as a fixed value. 

However, none of them have considered inherent 
variability in the trip-based electricity consumption of EB in 
the real-world operation, which will over or under estimate the 
electricity consumption. In this study, we develop a trip-based 
electricity consumption prediction model of EBs based on big 
data through neural networks (NN). The data-driven method 
can identify the variability with sufficient data. Moreover, the 
method can consider the related influencing parameters, 
including temporal characteristic (e.g. peak hour and off-peak 
hour), dynamic traffic conditions (e.g. the average travel speed) 
and route characteristics (e.g. the number of traffic lights and 
bus stops) and also understand their impacts on the prediction 
results. Further, as a data-driven method, NN does not need to 
specify a clear physical relationship between the data in 
advance [12] and it has the advantage of allowing the 
approximation of arbitrary non-linear functions of complexity 
[13], thus, NN can have a good predictive performance in trip-
based electricity consumption prediction. 

To the best knowledge of the authors, there has been no 
such model in the existing researches. This study is one of the 
first attempts to construct a neural network model to predict 
the trip-based electricity consumption of EBs. The model 
investigates the uncertainty and evaluate the impacts of 
influencing parameters under practical operation conditions. 
The main contributions of this study are as follows: (1) A 
neural network electricity consumption prediction model has 
been developed and influencing factors are taken into account, 
including temporal characteristic (e.g. peak hour and off-peak 
hour, weekdays and weekends), dynamic traffic conditions 
(e.g. the average travel speed) and route characteristics (e.g. 
the trip length, the number of traffic lights and bus stops, the 
driving direction); (2) The proposed model is validated by 
real-world electric bus data from a five-month consecutive 
collection in Shenzhen, China, comprising 1024 EBs. (3) A 
sensitivity analysis is performed to understand the impacts of 
influencing factors on the prediction results. 

II. DATA COLLECTION  

A. Data Source 

To protect the environment and reduce public bus exhaust 
emissions, the government of Shenzhen, China shows a great 
interest in transportation electrification and all fuel-powered 
buses has been replaced with EBs in 2017. Currently, 
Shenzhen’s public bus network is very large, with more than 
360 bus routes and a fleet of more than 5600 electricity buses. 
Our proposed neural network electricity consumption 
prediction model is based on real-world data from this full-
scale network. 

The data in this study originate from the electric bus data 
from 1024 electric buses consecutively collected from 1 
January to 31 May 2019 in Shenzhen, China. The data, 
including the bus ID, the GPS time, the mileage, the state-of-
charge (SoC), and the GPS coordinates, are recorded every 10 
seconds. 

B. Data Preprocessing 

Our study is to research the EB’s electricity consumption 
for a terminus-to-terminus trip. Hence, 

 
the raw data need preprocessing to be cut into the data each 
containing only one trip. The temporal attribute, the trip length, 
the average travel speed, and the electricity consumption for a 
terminus-to-terminus trip can be calculated on the basis of the 
processed data. To find the bus line corresponding to each 
electric bus, the data of the GPS coordinates are used to do 
map matching to match the bus lines. Then the characteristics 
of each line can be obtained, including the number of bus stop, 
the number of traffic lights needing passing. Further, the 
driving direction of each trip (to urban area or off urban area) 
is also obtained on the basis of the data of the GPS coordinates. 
Besides, the observed electricity consumption is calculated 
based on the consumed battery SoC (only accurate to two 
decimal places (e.g. 6%)) and 292 kWh (the battery stored 
energy corresponding to 100 % SoC). 

C. Characteristics of the bus network 

Fig. 1 shows the distribution of some key characteristics 
of the public bus routes in Shenzhen, China. From Fig. 1a, the 
median bus trip length is 12.7 km, and the mean value is 15.9 
km. The distribution is quite wide with the standard deviation 
(STD) of 9.2 km. 

Generally speaking, the increasing number of bus stops 
would have a negative effect on average travel speed and 
electricity consumption for each terminus-to-terminus trip as 

 

(a) Trip Length 

 

(b) Number of bus stops per kilometer 

 

(c) Average speed for peak and off-peak hours, weekday and 
weekend, to and off urban area 

Fig. 1. Distribution of some characteristics of the public bus routes per 

trip. (Box plot whiskers set at 5th and 95th percentiles.) 



frequent acceleration and deceleration can lead to increased 
idle time and energy loss. From Fig. 1b, the median number 
of bus stops reaches up to 1.8 stops per kilometer (in other 
words, the median distance of two adjacent visited bus stops 
is 556 m). The STD is 0.51 km. 

Fig. 1c presents the differences of average speed for a 
terminus-to-terminus trip among different times of a day, 
different driving directions, and different days of a week. The 
average speed for a terminus-to-terminus trip depends on the 
number of bus stops and traffic lights and the traffic conditions 
at different times (e.g. peak and off-peak hours, weekdays and 
weekends) and traffic conditions for different driving 
directions (e.g. to urban area and off urban area). As shown in 
Fig. 1c, the median average speed for peak hour is remarkably 
different from that for off-peak hour (15.6 km/h and 16.6 km/h 
respectively). And the figure for weekends (16.2 km/h) is also 
relatively lower than the figure for weekdays (16.7 km/h). The 
median average speed difference in the driving direction is not 
very obvious, but it can also be seen that the speed of driving 
off urban area is lower than the speed of driving to urban area. 

The graphs in the Fig. 1 clearly shows the heterogeneity of 
characteristics of bus routes in the real world, which can lead 
to significant changes in electricity consumption. Further, this 
indicates that these characteristics need to be taken into 
account when predicting trip-based electricity consumption of 
EBs. 

D. Data Analysis 

Based on the analysis of some characteristics of bus network 

abovementioned, this subsection presents the relationships 

between energy consumption and the potential influence 

factors, such as trip length, temporal attribute (time of a day 

and day of a week), and driving direction. 

1) Trip Length. Fig. 2 presents the relationship between 

the 5th, the median, the 95th percentiles of trip-based 

electricity consumption observed for each bus line and trip 

length. The electricity consumption appears to be roughly 

proportional to the trip length. However, with the trip length 

over 30 km, the energy consumption rate has a different 

performance from that of the trip length below 30 km. Hence, 

when predicting trip-based electricity consumption of EBs, a 

consideration of trip length alone is not sufficient to have an 

accurate electricity consumption prediction. 

2) Temporal Attributes. Fig. 3 compares the electricity 

consumption rate of EBs at different departure times of a day. 

During peak hours (7–8 a.m. for the morning peak hours and 

4–6 p.m. for the evening peak hours), the electricity 

consumption rate (around 1.19 kWh/km) is relatively higher 

than other time periods, this is because during peak hours, 

there are more passengers on the buses (increasing the mass 

of the vehicle) and heavier road congestion (reducing 

travelling speed and increasing the share of idle time). 

Conversely, during other time periods, both the number of 

passengers travelling on buses and traffic on the road are 

reduced, thus the electricity consumption rate is lower, with 

the average median value of 1.1 kWh/km. Fig. 4 compares the 

electricity consumption rate at different days of a week. The 

electricity consumption rates on weekdays show a similar 

pattern, so that at weekends are. However, there is a 

significant difference in the electricity consumption between 

on weekdays and at weekends. The electricity consumption 

rates on weekdays are relatively higher due to the fact that 

higher number of people commuting to and off work on buses. 

In comparison, at weekends, there are not many travel demand 

and traffic pressure could be eased, so the energy consumption 

could be lower. Overall, Figs. 3–4 confirm that when 

predicting trip-based electricity consumption of EBs, 

temporal attributes should be taken into account to increase 

the prediction accuracy. 

 

Fig. 2. Trip-based electricity consumption aggregated by bus lines. 
Each bus line is represented by three types of points (the green, 

blue, and red points represent the 5th, the median, and the 95th 

percentile of electricity consumption observed for this line) 

 
Fig. 3. Trip-based electricity consumption rate at different departure 

times of a day. (Box plot whiskers set at 5th and 95th percentiles.) 

 
Fig. 4. Trip-based electricity consumption rate at different days of a 

week. (Box plot whiskers set at 5th and 95th percentiles.) 

 

Fig. 5. Trip-based electricity consumption rate for different driving 

directions, with hourly statistics. (Box plot whiskers set at 5th and 
95th percentiles.) 



3) Driving Direction. Fig. 5 compares the electricity 

consumption rates for different driving directions on the basis 

of each departure time. During 6–9 a.m. the median electricity 

consumption rates for driving to and off urban area are similar 

(around 1.2 kWh/km). The electricity consumption rate 

around 7 a.m. for driving to urban area is slightly higher than 

that for driving off urban, due to more commuters need to take 

buses from suburban area to urban area for work. However, 

during 10 a.m.–9 p.m., the median electricity consumption 

rates with the driving direction of off-urban area are higher 

than that with the driving direction of to-urban area, and this 

difference reaches its maximum during the evening peak 

hours, with the figure of 0.16 kWh/km. Hence, the driving 

direction is also an important influencing factor affecting the 

trip-based electricity consumption of EBs. 

III. METHODOLOGY 

A. Neural Network Prediction Model 

A BP neural network is a type of neural network, which is 
a multi-layer feedforward neural network based on the error 
back propagation [14]. The basic concept is to use the network 
mean square error (MSE) as the objective function. Based on 
the gradient descent strategy, the parameters are adjusted in 
the negative gradient direction of the target to minimize the 
MSE between the expected output value and the observed 
value.  

In this study, a 3-layer neural network is built. The data are 
randomly divided into a training data set and a testing data set 
according to a 7:3 ratio. Cross-validation is performed for the 
selection of parameters. After minimizing the mean absolute 
percentage error (MAPE) in the process of optimization, the 
number of hidden layers can be determined, which is set to 10 
in this study. 

B. Influencing Factors 

Based on the data analysis in the Section 2.4, influencing 
factors, including the departure time of a day of a trip, the 
departure day of a week of a trip, the driving direction of a trip, 
the trip length of a trip, the average travel speed, the number 
of bus stops and traffic lights are taken as input variables, and 
the trip-based electricity consumption is taken as output 
variable. Some examples of the input variables and output 
variables are shown in Table 1. Rows A–F are input variables. 
Row A records the departure time of each trip; Row B records 
the departure day of a week of each trip (e.g. Number 1 
represents Monday); Row C records the driving direction of 
each trip (Number 1 represents driving to urban area, and 
number 2 represents driving off urban area); Rows E–F are the 
travel distance (in km), the average travel speed (in km/h), the 
number of bus stops and the number of traffic lights; Row H 
is the output variable (trip-based electricity consumption of 
EBs (in kWh). 

TABLE I.  DATA SAMPLES OF INPUT VARIABLES AND OUTPUT 

VARIABLE 

 Variables Sample1 Sample2 

A Departure Time of a day (hour) 7 15 

B Departure day of a week 1 6 

C Driving Direction 1 2 

D Trip Length (km) 25.8 17.8 

E Average Travel Speed (km/h) 15.35 16.00 

F Number of Bus Stops & Traffic Lights 91 62 

H Electricity consumption of EBs (kWh) 35.04 20.44 

C. Prediction Accuracy Measurement 

To better analyse the actual prediction performance of this 
neural network electricity consumption prediction model, the 
prediction results need to be evaluated and analysed. In this 
study, the following performance accuracy indicators are 
adopted: MAE, MAPE, and RMSE, which are given by: 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐷̂𝑖 − 𝐷𝑖|𝑖 (1)  

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝐷̂𝑖−𝐷𝑖|

𝐷𝑖
𝑖 (2)  

𝑅𝑀𝑆𝐸 = √
∑ [𝑖 𝐷̂𝑖−𝐷𝑖]

2

𝑁
(3)  

where 𝑁 is the total sample size, 𝐷̂𝑖 is the predicted value 
of the ith sample, and 𝐷𝑖  is the observed value of the ith 
sample. 

IV. RESULTS AND DISCUSSION 

A. Prediction Analysis 

The results in this section are based on the processed data 
set, containing more than 557000 data. Applying the neural 
network electricity consumption prediction model to this data 
set, the predicted results are obtained, shown in Fig. 6. 

And the relative error on the prediction for this trip-based 
electricity consumption and its distribution can be seen in Fig. 
7. The Fig. 7 shows that average relative error decreases for 
trips with a higher quantity of energy consumed, and the 
median and mean relative error is 0.98% and 4.53% 
respectively. Excluding outliers, the 5th and 95th percentile of 
relative error are -27.48% and 49.09% respectively. Further, 
according to prediction accuracy indicators, the values of the 
MAE, MAPE and RMSE are 2.36, 17.22%, 3.12 respectively, 
which could indicate that this neural network electricity 
consumption prediction model performs well. 

B. Sensitivity Analysis 

To have a deep understanding to identify which 
parameters have the greatest influence on the prediction 
results, a sensitivity analysis is performed in our model. Some 
input variables (departure time of a day, departure day of a  

 

Fig. 6. Predicted and observed results (partial) 

 

Fig. 7. Relative error on the prediction (%) as a function of the 
observed electricity consumption (kWh) for the BP neural 

network. (Box plot whiskers set at 5th and 95th percentiles.) 



TABLE II.  VARIABLES FOR SENSITIVITY ANALYSES 

Variables Base(a) Base(b) Base(c) Base(d) 

Departure Time 
peak off peak peak peak 

weekday weekday weekday weekend 

Driving Direction off urban off urban to urban off urban 

Trip Length (km) 12.7 12.7 12.7 12.7 

Average Speed 16.12 16.53 14.82 16.42 

Number of Bus 

Stops & Traffic 
Lights 

64 64 64 64 

week, driving direction) could not be quantified, so sensitivity 
analyses are performed on four different conditions. For the 
sake of brevity, every other single input variable is fixed to its 
median value, corresponding to the “base” cases (Table 2).  

The “high” and “low” cases correspond to a variation of 
“+10%” and “−10%” from the “base” value for each variable 
respectively (Fig. 8). 

From the results, it can be observed that the variables with 
the highest impact on the electricity consumption is the trip 
length under four different conditions. Under the conditions 
(c)-(d), its influence is more obvious than other two variables. 
The impact of average speed is also worth attention. With the 
average speed increasing, the electricity consumption 
decreases (only confined to the average on–trip speed of no 
more than 25 km/h, as the average speeds of terminus-to-
terminus trips in our experiment are no more than 25 km/h). 
Further, the influence of the number of bus stops and traffic 
lights also cannot be neglected, the electricity consumption 
also increases with more bus stops and traffic lights. 

V. CONCLUSION AND FUTURE WORK 

To help facilitate the planning and deployment of large 
electric bus fleets, the calculation of operating costs, and the 
selection of the right battery capacity, this paper proposes the 
neural network electricity consumption prediction model. 
This model can investigate the uncertainty in trip-based 
electricity consumption of EBs with consideration of 
influencing parameters under practical operation conditions. 
The existing real-world EB data in Shenzhen are taken as a 
case study in this study. The results indicate that it is effective 
to use our model to predict trip-based electricity consumption 
according to the performance accuracy indicators, MAE, 
MAPE, and RMSE. Moreover, sensitivity analyses have been 
conducted to figure out which variables have more influence 

on consumption under four different conditions, and the 
results show that the trip length has the highest impact, with 
the average travel speed and the number of bus stops and 
traffic lights following behind. Overall, we can support that in 
the case of trip-based electricity consumption prediction, 
using neural network prediction model can be effective and 
convenient. Moreover, it can be suggested that the proposed 
model in this study serve as a basis of scheduling optimization 
of large-scale electric bus fleets and optimization of the 
location of charging infrastructures. 
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