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Abstract—Electric power systems in many parts of the 
world are undergoing a transformation from relying almost 
exclusively on dispatchable power (e.g., fossil, nuclear, and 
large hydropower) toward incorporating more variable non-
dispatchable generation (e.g., wind and solar PV). We show 
for the first time that solar generation can decrease some 
aspects of variability in the peak residual load in power 
systems. The electric load minus generation from non-
dispatchable resources is known as the “residual load.” The 
maximum or peak residual load provides an estimate of the 
quantity of dispatchable generation capacity required to 
supply electric load during all hours. We study the peak 
residual load as a function of increasing wind and solar 
generation for three power systems in the U.S.: the PJM 
system in the Mid-Atlantic, the ERCOT system in Texas, 
and the NYISO system in New York. We analyze more than 
a decade of historical data for each region. The introduction 
of variable renewable power is often thought to increase the 
variability of most characteristics of power systems. 
Contrary to this idea, we show the inter-annual variability in 
peak residual load decreases for all three systems as a 
function of increasing solar generation. We attribute this 
effect to correlations between solar generation and peak 
electric load values. Peak electric load values for all three 
systems occur during summer heat waves, when air 
conditioning is used. We find that as solar generation 
increases, the quantity of dispatchable generation capacity 
needed to supply the residual load becomes more similar 
year-to-year. Therefore, in some systems, expansion of 
variable solar generation can increase predictability of the 
peak residual load. Thus, an increase in solar generation 
could ease achievement of certain system reliability targets. 
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I. INTRODUCTION 
The electric power industry has developed many metrics 

of system reliability over the previous decades. Some of 
these metrics will be challenged by expanding variable and 
intermittent wind and solar PV (solar) power resources. The 
North American Electric Reliability Corporation defines 
“resource adequacy” as the ability of the power system to 

supply power to meet consumer demands at all times [1]. At 
the core of resource adequacy is the distinction between 
dispatchable and non-dispatchable generation technologies. 
Thermal plants (e.g. fossil and nuclear) and large 
hydropower facilities can be generally classified as 
dispatchable generation because they can adjust and ramp 
their power generation up or down depending on system 
needs. In contrast, non-dispatchable technologies, including 
wind and solar power, can not be ramped up or down in the 
same way. To maintain resource adequacy for all hours, 
electric load must be less than or equal to the sum of 
available dispatchable plus non-dispatchable generation. 
Residual load, or net demand, solves for the needed quantity 
of dispatchable generation required to ensure resource 
adequacy, 

 electric load  –  non-dispatchable  £  dispatchable. (1) 

At any given moment (1) must be balanced for grid 
stability. Grouping electric load with non-dispatchable 
generation combines the two terms with larger seasonal and 
weather-based dependencies and correlations. Correlations 
among weather, electric load, and wind and solar availability 
are preserved when concurrent data from the same 
geographic region is used for analysis [2]. 

Researchers study the residual load of systems as a 
method to estimate the future impacts of wind and solar 
expansions. Several studies focused on residual load in the 
context of European power systems [3], [4], [5], [6], while 
others have focused on power systems in the U.S. [7], and 
system dynamics in general [8], [9], [10], [11]. Power 
systems operators are increasingly considering residual load 
as well in their planning processes [12], [13]. Studies have 
concluded that, as non-dispatchable generation increases, 
residual load needs to be taken into account when designing 
reliability mechanisms for power systems with substantial 
wind or solar generation [7]. 

Residual load is illustrated in Fig. 1 for a simulated 
power system. The figure shows the annual peak load and 
the peak residual load. The residual load (or required 
dispatchable generation) is greater during peak residual load 
than during peak load. 



 
Fig. 1. An example of residual load is shown using historical ERCOT 
load data and is centered on the annual peak load hour from 2019. The 
solar and wind generation profiles are synthetic. Dispatchable 
generation supplies power to meet the residual load. 

 

 
Fig. 2. Hourly electric load data for the PJM, ERCOT, and NYISO 
regions. The annual mean electric load is shown as black dashed lines. 
In the analysis, the electric load for each year is normalized by 
dividing by the annual mean load to remove the leading effects of 
economic growth and population changes. 

 

Peak residual load and its use as a proxy for required 
dispatchable generation has been discussed in many studies 
[3], [4], [5], [6], [8], [10], [11], [14], [15]. A few studies have 
added analysis of the inter-annual variability of peak residual 
load values for power systems studied over many years of 
data [4], [5], [6]. While the annual peak residual load tells us 
how much dispatchable generation is needed to supply all 
electric load for a given year, the inter-annual variability of 
the annual peak residual load values across multiple years 
tells us how the needed dispatchable generation capacity can 
change. If the inter-annual variability is relatively large, any 
study that aims to forecast future system performance will 
want to include multiple years of data in their analysis. 

One study using data from the Great Britain power 
system estimated the inter-annual variability in annual peak 
residual load [4]. They showed that inter-annual variability 
initially decreased as a function of increasing installed wind 
capacity. This is interesting because wind resources in 
Europe have substantial inter-annual variability [16], [17], 
[18]. The change in inter-annual variability in the Great 
Britain study was explained in a study that assessed the 
meteorological conditions associated with peak residual load 
[5]. When no wind generation is present in their modeled 
system, annual peak residual load occurs during hours of 
extreme low winter temperatures, and these hours correlate 
with available wind resources. By increasing wind 
generation, the most extreme peak residual load values are 
reduced and made more similar to the annual peak residual 
load values in other years, thereby decreasing the inter-
annual variability of the annual peak residual load values. 

There is an intuitive and positive relationship between 
solar generation and summer peak electric load in regions 
where peak load is driven by heat wave induced cooling 
demand [19]. In our study, we set out to answer two 
questions: how does the inter-annual variability of the annual 
peak residual load change as a function of wind and solar 
generation in regions where peak electric load is associated 
with heat wave induced cooling?, and is there a solar-based 
equivalent to the relationship observed in studies of Great 
Britain, where peak winter load correlated with the presence 
of wind resources, and deploying more wind resources 
reduced the inter-annual variability of the annual peak 
residual load? 

To answer these questions, we analyze three 
geographically distinct power systems in the U.S.: the PJM 
system in the Mid-Atlantic, the ERCOT system in Texas, 

and the NYISO system in New York. More than a decade of 
electric load data is retrieved from each region with 
concurrent wind and solar availability data sets derived from 
weather reanalysis data. We study the wind and solar 
generation as a function of total generation ranging from 
contributing 0% up to generating power equivalent to 100% 
of the annual load. We construct residual load profiles for 
each region, for each wind and solar mix, and for each year 
of data in the region. This allows us to study well populated 
statistical distributions that show the annual peak residual 
load across many years and its variability. We specifically 
study the inter-annual variability, comparing peak residual 
load values across the years of data. Estimates of peak 
residual load and its variability could aid planners in 
understanding how their systems may evolve as a function of 
wind and solar generation. 

II. METHODS 
When analyzing probabilistic distributions, the length of 

data records matters. Many studies that discuss inter-annual 
variability in wind or solar resources or electric loads use 
multi-decadal data sets [5], [6], [17], [20]. One of these 
studies concluded that less than 10 years of load and resource 
data are insufficient to provide robust results [4]. Multi-
decadal data sets of wind and solar resource availability can 
be calculated for any region with modern weather reanalysis 
data [16], [19], [21]. 

Historical hourly electric load data is downloaded 
directly from PJM [22], ERCOT [23], and NYISO [24] (Fig. 
2). We choose to use the data that requires the least cleaning 
necessary to make it usable: PJM 2006 through 2019, 
ERCOT 2003 through 2019, and NYISO 2004 through 2019. 
In some cases, older data is available, but not used. By 
limiting analysis to these years, our data cleaning is limited 
to adjusting the timestamp for daylight savings transitions in 
some data, and linear interpolation of at most two 
consecutive missing hours. 

The load data are affected by many factors that include 
economic and population growth, and weather events such as 
heat waves and winter storms. A linear regression shows an 
annual growth of approximately 1.4% for JPM, 2.1% for 
ERCOT, and -0.25% for NYISO. We remove the leading 



TABLE I.  WIND AND SOLAR MEAN CAPACITY FACTORS ACROSS 
ALL YEARS ANALYZED FOR THE PJM, ERCOT, AND NYISO REGIONS. 

 Capacity factor 
wind (CFwind) 

Capacity factor 
solar (CFsolar) 

PJM 0.39 0.23 
ERCOT 0.43 0.28 
NYISO 0.25 0.21 

 

 

impacts of economic and population growth on the demand 
data by normalizing the data by their annual mean values. 
Each year of data for each region is normalized by dividing 
the original values by the mean annual load for that year. 
This allows comparison of the peak hours across all years 
with respect to mean annual load, and can be used to 
extrapolate results based on estimates of future load growth. 

To account for correlations between electric load and 
weather, we use concurrent historical weather data to derive 
hourly wind and solar resource availability for each region. 
Specifically, we use wind speed and solar irradiance 
information from the MERRA-2 data set [21]. The MERRA-
2 data has a resolution of 0.625° longitude by 0.5° latitude. 
For each region and for both wind and solar availability, we 
calculate the mean resource capacity factor for each 0.625° 
by 0.5° cell with more than half its area falling within the 
geographic bounds of the power system territory. We then 
select the 25% of cells with the highest mean capacity factors 
to construct an aggregate hourly capacity factor profiles for 
each region. Wind and solar cells are selected independently. 

  We are interested in studying the residual load profiles 
for each region across a range of wind and solar mixes. The 
mean capacity factors across all years analyzed for the wind 
and solar profiles are denoted as CFwind and CFsolar and are 
region specific (Table 1). The wind and solar mixes are 
defined based on the average amount of generated power 
from wind and solar relative to the normalized electric load. 
For example, we define a 10% wind and 0% solar mix as a 
scenario capable of generating enough wind power to supply 
10% of the normalized electric load. (We define this case as 
fwind = 0.1, fsolar = 0.0, where fwind and fsolar represent the 
fraction of total electric load potentially supplied by wind or 
solar, respectively.) Therefore, to convert to the normalized 
nameplace installed capacity of wind, we divide fwind by 
CFwind; assuming ERCOT values (Table 1): 0.10/0.43 = 0.23  
(of normalized electric load). This definition of wind and 
solar mixes does not incorporate the shape of the electric 
profile; hours where generation is greater than load still 
contribute their full generation to this calculation. 

The normalized residual load profiles are calculated as: 

  (2) 

We study characteristics of the 20 peak residual load 
hours from each of the annual residual load profiles. The 
choice to study 20 hours balances selecting fewer hours that 
more precisely characterize the exact peak system demands 
versus selecting more hours to have a more statistically 
robust sample. The sensitivity of our result to the number of 
peak residual hours selected each year was checked. The 
trends presented in the Results section hold from selecting a 

single hour each year to selecting upwards of 50 hours per 
year for almost all cases. The exception is that the inter-
annual variability for NYISO remains approximately 
constant as solar generation increases when selecting fewer 
than 5 peak hours (see Fig. 5 in Results section). 

We analyze two main characteristics of the 20 annual 
peak residual load hours from each of the profiles. For each 
region and each wind and solar mix, we calculate the mean 
peak residual load, µRL, of the 20 annual peak hours across 
all years of data. For each region and each wind and solar 
mix, the inter-annual variability, sinter, first takes the mean of 
the 20 annual peak values independently (µyr), then takes the 
standard deviation of those values (3), where µ' is the mean 
of all µyr and Nyrs is the number of years. The sinter gives a 
measure of how different the peak residual load values are 
year-to-year. 

  (3) 

Examples of µRL and sinter can be seen in Fig. 3 for all 
three regions and two example wind and solar mixes. 

We examine a wide range of wind and solar mixes 
ranging from 0% to 100% wind generation and 0% to 100% 
solar generation in 1% steps. This arrangement builds a 101 
by 101 grid that results in 10,201 wind and solar mixes. 

III. RESULTS 
The results are split into two sections. The “Peak residual 

load” section shows how the mean of the 20 annual peak 
residual load values per year across all years, µRL, changes as 
a function of wind and solar generation for the three 
analyzed power systems. The “Peak residual load” section 
confirms results seen by many other studies and provides an 
estimate of the required quantity of dispatchable generation 
capacity needed to meet peak residual load hours. The 
“Variability of peak residual load” section analyzes the 
distribution of sinter as a function of wind and solar 
generation and shows the spread of the peak values and 
provides information to determine the quantity of 
dispatchable generation capacity needed to supply all peak 
residual load with a degree of certainty.  

A. Peak residual load 



   
Fig. 4. The mean of the 20 peak residual load values per year across all years is shown in panels (a), (b), and (c) for the PJM, ERCOT, and NYISO 
regions, and indicates the approximate quantity of dispatchable generation needed to power the system for all hours. 

   

   
Fig. 3. Examples of the mean peak residual load (µRL) and inter-annual variability (sinter) are shown for the PJM, ERCOT, and NYISO regions for two 
illustrative wind and solar mixes of: 0% wind and 0% solar and 0% wind and 25% solar. The 20 peak residual load values per year are shown split by 
year in the left sub-panels and aggregated together in the right sub-panels. The calculation of the inter-annual variability incorporates the annual 
structure (left sub-panels), while the mean peak residual load is calculated based on the aggregate of all annual values (right sub-panels). Boxes show 
the region containing 50% of the data (with 25% on either side), and whiskers show the region containing 90% of the data (with 5% of the data on 
either side). The orange bands indicate mean values because mean values are used in the calculation of inter-annual variability. 

For each wind and solar mix, the hourly residual load 
values indicate the quantity of dispatchable power needed to 
ensure resource adequacy for that hour. The mean of the 20 
annual peak residual load values per year across all years, 
µRL, can be used as an initial estimate of the dispatchable 
generation required to meet the average peak hour. Fig. 4 
shows µRL across all considered wind and solar mixes. The 
gradient shows the relative benefit in reduced µRL from 
installing additional wind or solar generation. Some common 
characteristics for all three regions include: 

• The gradient is steepest at the origin (0% wind and 
0% solar). 

• Wind and solar additions have diminishing returns 
with respect to reducing the peak residual load. 

• When solar generation is relatively small, <10% 
generation, additions of wind generation bring 
minimal reductions to peak residual load. 

• When solar generation is larger, >10% generation, 
additions of wind generation bring greater reductions 
to peak residual load. 

The first two bullets are consistent with many previous 
studies [2], [8], [10], [11], [15], [19], [25]. 

B. Variability of peak residual load 
The inter-annual variability, sinter, (3) of the peak 

residual load values is shown in Fig. 5. A common feature 
of the inter-annual variability distributions for all three 
regions is that, in general, additions of solar generation 
reduce the inter-annual variability. Depending on the wind 
generation, after approximately 30% solar generation in 
ERCOT, the inter-annual variability increases with 
increasing solar generation, this reverses the common 
observed trend. The general decrease in inter-annual 
variability with increasing solar generation shows that the 
peak residual load values become more similar year-to-year 
as solar generation expands. This runs contrary to common 
assumptions about increasing variability as renewable 
generation increases. 

Inter-annual variability increases as a function of wind 
generation throughout almost all of the wind and solar 
mixes for the PJM and ERCOT regions. There is less of a 



   
Fig. 5. The inter-annual variability of the peak residual load values, sinter, is shown in panels (a), (b), and (c) for the PJM, ERCOT, and NYISO 
regions. 

   
Fig. 6. Mean solar capacity factors during the 20 annual peak residual load hours each year is shown in panels: (a) PJM, (b) ERCOT, and (c) NYISO. 

Fig. 7.  

clear trend in the NYISO region, which has a lower annual 
wind capacity factor of 0.25 compared to 0.39 and 0.43 for 
PJM and ERCOT, respectively (Table 1). 

IV. DISCUSSION 

A. Decreasing inter-annual variability and solar 
Adding solar generation to the three studied electric 

power systems reduces the inter-annual variability, sinter, (3) 
of the peak residual load values in general. This means the 
peak values become more similar year-to-year. This trend is 
seen for all three regions and is shown in Fig. 3 and Fig. 5. 

All three regions experience their annual peak loads 
during the summer months on hot days when air 
conditioning is in use. This analysis is in agreement with 
previous studies that show summer days on average have 
substantial solar resources available during their daily peak 
load hours, as seen in Fig. 6 [2], [11], [15], [19], [25]. This 
analysis is unique because it demonstrates that this 
correlation between peak load and solar availability reduces 
the inter-annual variability of peak residual load values as 
more solar generation is deployed. The correlation between 
the peak load hours and solar availability allows added solar 
generation to reduce the most extreme residual load values 
year-to-year, and thereby decreases the inter-annual 
variability. This analysis provides a solar generation 
complement to the studies of inter-annual variability in Great 
Britain that showed increasing wind generation could, in 
certain cases, decrease the inter-annual variability of winter 
peak residual load [4], [5]. 

The results shown here may be broadly applicable across 
much of the U.S. In 2018, approximately 77% of the annual 
electric load in the contiguous U.S. occurred within the 
territories of power systems that experience their annual peak 
load during the summer months (data from [26]). The PJM, 
ERCOT, and NYISO regions are included in this group. 

This is an important result because it shows that some 
critical characteristics of power systems, such as peak 
residual load, may become more predictable in systems that 
expand  intermittent and variable solar generation. In power 
systems with reduced inter-annual variability, more 
consistent and predictable peak dispatchable generation 
needs will allow more precise system planning. 

B. Expanding to include energy storage 
The residual load profiles, as currently implemented and 

generally defined in the literature, do not incorporate the 
benefits of introducing energy storage into a power system. 
As it is modeled here, the peak residual load values show the 
quantity of dispatchable generation needed to supply the 
remaining electric load. In this formulation, energy storage 
and other distributed energy resources are considered in the 
dispatchable generation category. Energy storage could be 
added as a third parameter of interest in addition to wind and 
solar generation. Simple operational rules could characterize 
energy storage focused on peak residual load shaving. We 
suspect that this would substantially reduce the variability by 
shaving the most extreme values the most. A similar method 
could also model distributed energy resources as adjustments 
on top of the residual load profiles. 

C. Limitations of the analysis 
Some concerns should be raised when using historical 

load profiles for analysis. There is a potential trade-off 
between using longer electric load data records to capture 
more years of data and variability versus the possibility that 
older years no longer reasonably represent the current 
system. If older years no longer reasonably represent the 
current system, they are less useful for forecasting. One 
example of this could be a significant expansion of behind-
the-meter (BTM) solar PV. We specifically excluded regions 
from this analysis that have substantial BTM solar, such as 
California. In future work, calibrations could be applied to 



the electric load profile to adjust all years of data to have the 
same estimated quantity of BTM solar, or remove it entirely. 
This would create more accurate representations of regions 
like California. 

V. CONCLUSION 
This paper analyzes annual peak residual load and its 

inter-annual variability as a function of increasing solar and 
wind generation. We study three geographically distinct 
power systems in the U.S.: the PJM system in the Mid-
Atlantic, the ERCOT system in Texas, and the NYISO 
system in New York. We show that increasing solar 
generation consistently decreases the inter-annual variability 
of the annual peak residual load values for all three regions 
(Fig. 3 and Fig. 5). This result appears to be an exception to 
the common assumption that an increase in variable 
renewable capacity in a power system brings an increase in 
variability of most characteristics of that power system. 

These three regions experience their annual peak loads 
during summer months, on hot days when air conditioning is 
in use. There are considerable solar resources available 
during these same peak load hours (Fig. 6). The correlation 
between the peak load hours and solar availability allows 
additions of solar generation to reduce the most extreme 
residual load values year-to-year, and thereby decrease the 
inter-annual variability. This is an important result because it 
shows that some critical characteristics of power systems, 
such as the annual peak residual load, may become more 
predictable in systems that expand intermittent and variable 
solar generation. Changes in inter-annual variability will 
have economic consequences for building and operating 
dispatchable generation resources to ensure power system 
reliability. 
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