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Abstract— It is widely recognized that cellulose accessibility is
closely connected to sugar yield which determines economic via-
bility of biorefining. However, existing kinetic models are not able
to capture the evolution of the microscopic properties of biomass
(e.g., cellulose accessibility) during pretreatment. Motivated by
the limitation, we developed a multiscale model that is capable
of describing the dynamic evolution of cellulose accessible area
by integrating a macroscopic kinetic model with a microscopic
kinetic Monte Carlo model. Then, a model reduction technique is
employed to lower the computational complexity of the multiscale
model, and employed to a model-based feedback controller to
enhance the cellulose accessibility while minimizing the heat during
alkaline pretreatment. The implementation of the control framework
improved the glucose yield by 19.9% compared to a conventional
constant-temperature pretreatment method.
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I. INTRODUCTION

As a sustainable substitute for petroleum-derived fuel,
biofuels have attracted much attention over the last few
decades [1, 2]. In more recent days, since fuel-conversion
of agricultural crops, whose supply can be limited due to
the competition with the food industry, the use of ligno-
cellulosic biomass (i.e., woody biomass) comes under the
extensive spotlight [3, 4]. However, since the conversion of
lignocellulosic biomass is relatively expensive hurting the
economic viability of cellulosic biofuel production, optimiza-
tion of the process operation is a key to the success of the
biorefining industry. Among the biorefining stages, formation
of fermentable glucose (i.e., a simple sugar that constructs
cellulose) has become a bottle-neck for commercialization of
cellulosic biofuel production due to compact and rigid struc-
ture of lignocellulosic biomass known as recalcitrance [1, 5].

Since the inherent recalcitrance of lignocellulosic biomass
helps resisting its degradation into structural carbohydrates
by enzymes, some preprocesses (i.e., pretreatment, mechani-
cal refining) are typically applied before the cellulose hydrol-
ysis to open up biomass structure and make cellulose more
accessible to enzymes [6]. It has been widely recognized
that a pretreatment step is very important to disrupt the
recalcitrant structure by removing a lignin barrier (i.e., delig-
nification) and increase the cellulose accessible surface area
(ASA) for improved biomass enzymatic digestibility [1, 7];

because a high sugar yield can be achieved when enzymes
can easily access to the surface of cellulose [5].

During the last decade, a number of pretreatment tech-
niques have been developed for bioconversion of lignocel-
lulosic biomass. Although the mechanisms of these pre-
treatment methods are different, the objective is to enhance
cellulose ASA for efficient hydrolysis by either chemical
or enzymes. Among the pretreatment methods, alkaline
pretreatment, which is a chemical pretreatment type, has
received more attention as it is relatively cost effective and
energy efficient than other methods [8, 9]. Sodium hydroxide
(NaOH) is one of the most effective alkaline reagents, and
has been utilized for pretreatment of diverse lignocellulosic
biomass mostly at elevated temperature [10]. Nevertheless,
due to the lack of knowledge on the evolution of mi-
croconfiguration of biomass during pretreatment, a control
framework that can possibly predict cellulose ASA and
energy consumption has not been designed.

While there are some kinetic models for pretreatment in
the literature, they are not able to capture the evolution
of microscopic biomass properties such as ASA [11, 12].
Motivated by this limitation, we propose a multiscale model
of alkaline pretreatment to describe the evolution of cellulose
ASA during the pretreatment process. Then, utilizing this
model, we develop a model-based feedback control scheme
to simultaneously improve cellulose ASA and minimize the
heat usage.

The paper is organized as follows: A multiscale model
is presented to describe the evolution of cellulose ASA
during alkaline pretreatment by integrating macroscopic and
microscopic models. Then, experimental data in the literature
is employed to predict the glucose yield from the simulated
ASA values. Lastly, a model predictive control (MPC) algo-
rithm for the pretreatment process is developed to enhance
cellulose ASA and reduce the heat consumption.

II. MULTISCALE MODELING OF ASA

In this work, a multiscale model of ASA is designed by
adopting multiscale models that describe pulp digester [13,
14]. The first principles that are identical to Kraft pulping
reaction kinetics are considered to describe the alkaline
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Fig. 1: A pretreatment system composed of three phases with four
liquor and five solid components.

(NaOH) pretreatment of lignocellulosic biomass; both pro-
cesses utilize NaOH to delignify lignocellulosic biomass at
high temperature either to make cellulose more accessible or
to obtain pure cellulose fibers for papermaking. Accordingly,
the system of lignocellulosic biomass in a pretreatment
reactor can be described by a widely used Kraft pulping
kinetic model (i.e., Purdue model). Specifically, Fig. 1 shows
the system that consists of solid, entrapped-liquor and free
liquor phases. The solid phase describes the dry portion of
biomass, the entrapped-liquor phase represents the liquor
residing in the pores of biomass, and the free-liquor phase
denotes a bulk phase fluid encompassing the solid and
entrapped-liquor phases. By integrating the kinetic model
with a microscopic model (i.e., kinetic Monte Carlo (kMC)
algorithm), a multiscale model that is capable of capturing an
ASA evolution within the pretreatment process is developed.

A. Process description

In general, biorefining goes through several processes.
After collection of appropriate biomasses, they are pretreated
with chemical solvents to increase cellulose accessibility,
followed by mechanical refining which further physically
deconstruct the biomass structure. Then, enzymes (e.g., cel-
lulase) hydrolyze the cellulose into its monosaccharide unit
which is mainly glucose (i.e., a simple sugar). Fermentation
converts the sugar to alcohol or acid, which is then separated
by distillation for fuel purity. Utilizing these processes, a
variety of operation scenarios are possible. For example,
intensive refining is required or high enzyme dosage is
necessary to meet a target glucose yield when the cellulose
ASA from pretreatment process is not satisfactory. Since
achieving a relatively high ASA during pretreatment would
save the cost associated with subsequent processes such as
mechanical refining or enzymatic hydrolysis, pretreatment
plays an important role in producing low cost sugars from
biomass.

In general, due to its high recalcitrance, lignocellulosic
biomass (i.e., wood chips) is cooked intensively in an al-
kaline pretreatment reactor, where lignin is removed and
chemical composition changes to increase cellulose ASA;
this process is required as microfibrils are embedded in

a matrix of cross-linked lignin that blocks the cellulose
surface. By manipulating the operating temperature, we can
adjust the extent of the delignification reaction between
woody biomass and sodium hydroxide (i.e., through the
Arrhenius law) [15, 16]. Typically, alkaline pretreatment is
performed at high temperature (70 – 150 C◦) for 10 –60
minutes under 2.0% NaOH concentration [6]. During the
alkaline pretreatment process, a significant amount of heat
is required to elevate and maintain the high temperature,
typically consuming 23% of the total operation cost [17].

B. Macroscopic model formulation

The degradation kinetics of biomass during the NaOH
pretreatment is described by a simplified version of a Kraft
pulping model (i.e., extended Purdue model) [16, 18]. In
this work, five solid components are considered for the
solid phase: high reactivity lignin(s1), low reactivity lignin
(s2), cellulose (s3), araboxylan (s4) and galactoglucomman
(GGM) (s5). Although six liquor components are considered
in the original Purdue model, due to the absence of sulfuric
acid in alkaline pretreatment, only four liquor components
are considered for the two liquor phases: active NaOH
(e1, f1), passive NaOH (e2, f2), dissolved lignin (e3, f3),
and dissolved carbohydrates (CHO) (e4, f4) (Fig. 1). In
the macroscopic modeling framework, the subscripts i =
1, . . . , 5 and j = 1, . . . , 4 denote the solid and the liquor
components, respectively.

1) Mass and energy balance equations: Since the reactor
is a batch type, the mass balances of the solid phase are
equal to their reaction rates as follows:

dρsi
dt

= Rsi (1)

where Rsi is the reaction rate of the solid component i. Then,
the mass balance of the entrapped- and free-liquor phases are
defined as follows:

dρej
dt

= Rej +D
(
ρfj − ρej

)
(2a)

dρfj
dt

= Dε
(1− η)

η

(
ρej − ρfj

)
(2b)

where Rej is the reaction rate of the entrapped-liquor com-
ponent j, D is the average mass diffusivity of the four liquor
components to consider the mass transport between two
liquor phases, ε is the biomass porosity, and η is the biomass
compaction factor which takes into account the swelling of
biomass during pretreatment. Note that the mass balance of
the free-liquor phase does not include the reaction rate term
since the solid degradation reaction is assumed to take place
only at the surface of the solid and entrapped-liquor phases.

Assuming that the heat transfer coefficient between the
solid and entrapped-liquor phases is very large, a single
temperature value is considered for the two phases which is
defined as Tc, namely a chip phase temperature. Therefore,
the temperatures of chip phase (Tc) and free-liquor phase
(Tf ) are considered for the given pretreatment system. On



Fig. 2: Schematic illustration of the simulation lattice.

the basis of the above assumption, the energy balance of the
chip phase is defined as below:

(CpsMs + CpeMeε)
dTc
dt

= U (Tf − Tc) +DεDE + ∆HR

5∑
i=1

Rsi

(3)

where Cps and Cpe are the heat capacities of the solid and
entrapped-liquor phases, respectively, Ms and Me are the
total masses of the two phases, respectively, U is the heat
transfer coefficient between the two liquor phases, DE is the
amount of energy transported to the entrapped-liquor from
the free-liquor phase by diffusion, and ∆HR is the heat of
reaction.

Then, the energy balance of free-liquor phase is given as:

(CpfMf )
dTf
dt

= U (Tc − Tf )−Dε (1− η)

η
DE (4)

where Cpf and Mf are the heat capacity and total mass of
the free-liquor phase.

The detailed model derivation and parameter values are
documented in references [13, 14]

C. Microscopic model formulation

The conventional macroscopic models are not able to
capture the evolution of biomass microscopic properties such
as cellulose accessibility. Motivated by this consideration, a
microscopic model (i.e., kMC algorithm) is hybridized with
the macroscopic model to describe the evolution of cellulose
ASA during alkaline pretreatment. Modeling of the cellulose
ASA via kMC simulation is explained in this section.

1) Simulation lattice formation: In order to capture
the microscopic properties, a 2-dimensional axisymmetric
simulation lattice is introduced and used for simulating
the spatially-resolved biomass microconfiguration (Figs. 2
and 3). The initial configuration of the five solid components
is considered in each layer based on their chemical compo-
sition; lignocellulose typically has a hierarchical structure
which consists of primary wall and middle lamella (P &
ML), and secondary wall layers (S1, S2 and S3) [19]. The
number of radial and longitudinal lattice sites are denoted by

Lr and Ll, respectively, and periodic boundary conditions
are applied on both the longitudinal directions (Fig. 2).
The length of a single square-shaped lattice site is set to
be 3.5 nm which is the diameter of dissolved lignin and
cellulose elementary fibril [20].

In this work, Norway Spruce is selected as lignocellulose
feedstock whose properties such as chemical composition of
each layer and cell wall thickness (Wwall) are employed to
initialize the simulation lattice sites; Norway spruce (Picea
abies) is one of the most commonly used materials for
Northern Bleached Softwood Kraft (NBSK) pulp whose
production volume is rated as the second largest in the world
by tonnage.

2) Implementation of kMC algorithm: A kMC algorithm
is applied to describe the evolution of biomass microcon-
figuration by utilizing the balance equations (1)–(4), and
the initialized simulation lattice. The total solid degradation
reaction rate is defined as follows:

Rtot =
5∑
i=1

Rsi (5)

Then, the ratios of the individual rates to the total rate
are computed to infer the probability of each degradation
event as presented in Table I, followed by drawing a random
number, ξ1 ∈ (0, 1], to select the solid component which
will be removed from the simulation lattice sites. After
the selection, another random number, i.e., ξ2 ∈ (0, Nsi ],
is generated to determine which site of the selected solid
component will dissolve, where Nsi denotes the number of
unreacted si sites on the lattice.

Then, the concentration and temperature of the entrapped-
liquor and free-liquor phases are updated by (1)–(4). Lastly,
the elapsed time of the executed event is computed as
follows:

∆t =
− ln ξ3
Rtot

(6)

where ξ3 ∈ (0, 1] is an additionally drawn random number.
The series of operations will be repeated until the ac-

cumulated event time reaches the user-defined final time
(tfinal); typically, alkaline pretreatment operates for 10–60
minutes [6].

3) Cellulose ASA calculation: During the pretreatment
process, lignin barrier dissolves faster than cellulose due to
the stability difference under the alkaline condition. As a

TABLE I: The probability conditions and corresponding events.

Probability Conditions Executed Event

0 < ξ1 ≤ Rs1
Rtot

Degradation of s1
Rs1
Rtot

< ξ1 ≤ Rs1+Rs2
Rtot

Degradation of s2
Rs1

+Rs2
Rtot

< ξ1 ≤ Rs1
+Rs2

+Rs3
Rtot

Degradation of s3
Rs1+Rs2+Rs3

Rtot
< ξ1 ≤ Rs1+Rs2+Rs3+Rs4

Rtot
Degradation of s4

Rs1
+Rs2

+Rs3
+Rs4

Rtot
< ξ1 ≤ 1 Degradation of s5



Fig. 3: Schematic illustration of the calculation of cellulose ASA.

result, the surface of cellulose gets uncovered and accessible
for enzymatic hydrolysis. The evolution of the cellulose ASA
is taken into account by counting the number of open sites
which are in contact with the entrapped-liquor phase as
follows:

Ac =
No,s3

No,s1 +No,s2 +No,s3 +No,s4 +No,s5
(7)

where Ac is the ASA of cellulose, and No,si is the total
number of component sites of si that are in contact with the
entrapped-liquor. For example, the number of black arrows
in Fig. 3 represents that of cellulose, No,s3 .

D. Prediction of glucose yield

In order to predict the glucose yield from the proposed
ASA modeling, experimentally measured glucose yield data
in reference [21] is used to fit the kMC simulation results as
follow:

Yg = α ·Ac (8)

where α is a scalar parameter that connects the simulated
ASA and glucose yield (Yg)); please note that α has been
obtained by utilizing multiple sets of experimental data. The
idea behind introducing this experimentally verified α is that
glucose yield by enzymatic hydrolysis is directly determined
by cellulose ASA [22].

Specifically, the yields under two different operating con-
ditions are used to determine the scalar parameter, α; the
two conditions are presented in Table. II where the sample 1
is for untreated biomass. The scalar parameter is computed
by minimizing the errors between the predicted values and
the experiment data as follows:

min
α

(α ·Ac,1 − Yg,1)
2

+ (α ·Ac,2 − Yg,2)
2 (9)

where Ac,i and Yg,i are the simulated ASA and glucose yield
values from the ith sample, respectively.

TABLE II: The operating conditions of the pretreated samples.

Conditions and yield Sample 1 Sample 2
Temperature (Tf ) N/A 120 C◦

Residence time (tfinal) N/A 60 min
NaOH concentration (ρf1 ) N/A 2.0%
Glucose yield (48h) 14.7% 56.2%

III. MODEL-BASED FEEDBACK CONTROLLER DESIGN

In this section, a model-based feedback controller is
designed for alkaline pretreatment. The objective of the
controller is to enhance cellulose ASA while mitigating
the pretreatment heat usage by manipulating the free-liquor
phase temperature (i.e., bulk phase temperature). A discrete-
time linear model is identified, which will be used to design
a state estimator. The implementation of a model predictive
control (MPC) strategy is described in this section.

A. Model reduction method and state estimator

As the employed macroscopic model (i.e., extended Pur-
due model) consists of 19 nonlinear ordinary equations,
a reduced-order model is required to mitigate the compu-
tational complexity. Specifically, multivariable output error
state space (MOESP) algorithm is used to identify a state-
space model that is in the following linear discrete time-
invariant form:

xtk+1
= Axtk +Butk (10a)

ytk = Cxtk + vtk (10b)

where xtk is the state variables of the reduced-order model,
utk is the manipulated input variable (i.e., Tf ), ytk is the
output variable (i.e, Yg), and vtk is an unknown noise which
is considered to be zero mean Gaussian white [23].

Then, a Kalman filter (i.e., state estimator) is designed to
estimate the states from the measurement at every sampling
time (t = tk). The Kalman filter gain (Mtk ), which is
determined at every time steps, leads to a correction of
the state estimates (x̂tk ) and the error covariance (Ptk ) as
follows:

Mtk = Ptk|tk−1
CT
(
Rtk + CPtk|tk−1

CT
)−1

(11a)

x̂tk = Ax̂tk|tk−1
+Butk +Mtk

(
ytk − ŷtk|tk−1

)
(11b)

Ptk = (I −MtkC)Ptk|tk−1
(11c)

where I denotes the identity matrix. The estimated state
variables in (11b) are used to predict the future state and
output variables through (10).

B. Model predictive control (MPC) formulation

A MPC scheme is applied to the alkaline pretreatment
process by using the developed Kalman filter that predicts the
future behavior of the system. The controller is designed to
compute an input sequence in which a defined cost function
is optimized subject to the given constraints in the following
form:



min
Tfk

,...,TfNp

Np−1∑
i=k

ω1 (Tfi)
2

+ ω2

(
Yg,tNp

− Yg,set
)2

(12a)

s.t. Kalman filter, (10)− (11) (12b)
Tfmin

≤ Tfk+m
≤ Tfmax

(12c)
|Tfk − Tfk+1

|
∆

≤ RTf

m = 1, . . . , Np − k

(12d)

where ω1 and ω2 denote the weighting parameters for the
manipulated input and the endpoint output variable deviation,
respectively, Yg,set is a set-point value for the output variable,
Tfmin

and Tfmax
are the operating temperature boundaries of

the pretreatment reactor which serve as an input constraint, ∆
is the sampling interval, Tfk is the free-liquor temperature
at kth sampling time which stays constant until the next
sampling period, and RTf

is the maximum input change rate
to prevent an abrupt temperature jump.

Under the shrinking horizon framework (i.e.,
Np =

tfinal−tk
∆ ), the trajectory of the manipulated

input (Tfk , . . . , TfNp
) is optimized by solving (12). The cost

function (12a) is formulated to simultaneously improve the
cellulose ASA and minimize the heat usage for enhanced
profitability of pretreatment. The system parameters of the
employed MPC are summarized in Table III.

IV. CLOSED-LOOP SIMULATION RESULTS

MATLAB® R2019a with Intel® CoreTM i7-4790 CPU @
3.60 GHz and 16 GB RAM is utilized for the dynamic kMC
simulations and MPC calculations. Conventional alkaline
pretreatment has been performed under a constant tem-
perature, while the proposed method manipulated the bulk
phase temperature to increase cellulose ASA which in turn
improves enzymatic digestibility. In order to demonstrate the
advantage of the proposed approach over the conventional
method, glucose yield and heat energy consumption from
the both methods are compared.

Under the closed-loop operation with the identical initial
conditions (e.g., residence time and NaOH concentration),
19.9% higher glucose yield is achieved by consuming only
1.4% more energy compared to the constant temperature op-
eration (i.e., a conventional operating strategy), as described
in Table IV. The energy consumption is computed on the

TABLE III: List of MPC system parameters

MPC parameters Notations Values
Number of prediction horizons Np 12
Sampling interval ∆ 5 minutes
Weight on the input ω1 100
Weight on the output ω2 50
Output set-point Yg,set 90

Input Constraints Notations Values
Upper temperature boundary Tfmax 147 C◦

Lower temperature boundary Tfmin
117 C◦

Maximum temperature change rate RTf
1 C◦/min

TABLE IV: Operating conditions and results of the open-loop and
closed-loop operations.

Conditions Open-loop Closed-loop
Residence time (tfinal) 60 min 60 min
NaOH concentration (ρf1 ) 2.0% 2.0%
Glucose yield 56.2% 76.1%
Energy consumption 100.0% 101.4%

basis of the free-liquor temperature during the pretreatment.
Even though the same amount of alkaline solvent and res-
idence time are utilized for the pretreatment process, the
significant improvement in glucose yield is observed. The
significantly enhanced yield would compensate for the slight
increase in energy consumption; therefore, the proposed
MPC system is more advantageous than the conventional
constant temperature pretreatment.

The closed-loop input and output profiles (i.e., Free-liquor
temperature and cellulose ASA) are presented in Figs. 4
and 5, respectively. Relatively intensive heat is applied after
30 minutes of pretreatment whereas the cellulose ASA shows
a steady increase along the time, implying that more heat
usage than the first half is required to achieve a similar degra-
dation rate due to the low alkaline concentration. While the
operation under a constant temperature is not able to handle
the negative impact of the decreased NaOH concentration,
the closed-loop operation is more effective in dealing with
the reduced alkaline reagent.

V. CONCLUSIONS

In this work, a multiscale model was developed by in-
tegrating a widely used kinetic model with a microscopic
model in order to describe the evolution of cellulose ASA
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during pretreatment process. A reduced-order model was
identified to reduce the computational complexity of the
multiscale model, which is then implemented to a MPC
system to improve cellulose ASA while minimizing the
heat usage of the pretreatment process. The kMC simulation
results demonstrated that the closed-loop operation provides
enhanced cellulose ASA under the identical initial condi-
tions.

However, as several microscopic properties of biomass
such as lignin concentration, cellulose crystallinity and de-
gree of polymerization can also collectively affect cellulose
ASA, incorporation of them into the multiscale model is
required to improve the model robustness, which will be a fu-
ture task. Moreover, recently, mechanical refining techniques
are widely used to further destruct the biomass structure
to boost cellulose ASA. Therefore, the model coverage can
be enlarged by taking into account the effect and energy
consumption from the refiner, which is another direction of
the future work.
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