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ABSTRACT 
 In this work, we propose a novel multi-scale 

bottom-up optimization framework to address the 
decarbonization transition planning for power systems, 
which incorporates multiple types of information for 
each existing or new unit in the power systems, including 
its technology, capacity, and age. To reduce the 
computational challenge, a novel approach integrating 
Principal Component Analysis (PCA) with clustering 
techniques is proposed to obtain representative days. To 
illustrate the applicability of the proposed framework, a 
case study for New York State was presented. The 
proposed approach obtaining representative days using 
PCA coupled with K-means shows better performance 
than multiple state-of-the-art clustering approaches. The 
optimization results indicate that offshore wind, hydro, 
and utility solar are the main power sources in the state 
by the end of the planning horizon. To validate the 
optimization results, we conduct hourly power systems 
operations simulation for the entire planning horizon, 
and the result indicate that the error bar using the 
proposed framework is less than 1.5% in the case study. 
 
Keywords: decarbonization, renewable electricity 
transition, multi-scale optimization, renewable 
generation, bottom-up model  

1. INTRODUCTION 
The Paris Agreement aims to limit the increase in 

global average temperature to well below 2 °C above the 
preindustrial levels. To achieve this target, power 
systems decarbonization has been a priority topic for 
countries around the world. It facilitates the design of 
decarbonization transition pathways for power systems 
to simultaneously optimize the systems changes and 

simulate the corresponding hourly operations, while 
considering each individual units in the power systems.  

To the best of our knowledge, there is no existing 
research work on the multi-scale bottom-up renewable 
electricity transition optimization that incorporates 
multiple types of information for each individual 
generator or storage unit, including information about its 
technology, capacity, and age. Existing multi-scale 
energy transition optimization models typically includes 
two time scales on yearly and hourly bases [1]. The yearly 
time scale accounts for the decisions of systems changes 
or design decisions, while the systems operations 
decisions are made on an hourly basis in conjunction 
with the design decisions [2]. To reduce the 
computational requirements associated with planning 
for the energy transition pathways and simulating the 
hourly systems operations for the entire horizon 
simultaneously [3], the approach of representative days 
has been widely applied in multi-scale energy transition 
optimization studies [4]. Multiple approaches have been 
used to obtain the representative days, such as rule-
based selection, agglomerative hierarchical clustering 
(AHC), and K-means clustering [5]. On the other hand, 
most of the existing multi-scale bottom-up energy 
transition models include only the capacity and 
technology information of a unit, while including the 
ages of both existing and future units in the framework 
is crucial for developing more reliable transition 
pathways, as existing units with large ages and new units 
with short technology lifetime may retire during 
transition period.  

In this work, we propose a novel multi-scale bottom-
up renewable electricity transition optimization 
framework, which incorporates two time scales that 
correspond to the design and the operation of power 
systems, and it includes multiple types of information for 
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both existing and new units in power systems, including 
technology, capacity, and age. We also propose a novel 
approach integrating PCA and clustering techniques to 
obtain representative day and benchmark the approach 
with state-of-the-art clustering approaches. A case study 
for the power sector in New York State is presented. 

2. PROBLEM STATEMENT AND METHODOLOGY 

2.1 Problem Statement 

In this work, a bottom-up multi-scale electricity 
transition framework is proposed to address the 
optimization of potential renewable transition pathways 
for the electricity sector. In the framework, the systems 
transition and operations are interpreted in two time 
scales, namely the design periods and the operations 
periods. The design periods have a time interval of a year 
for making the systems changes decisions, and the 
operations periods consist of consecutive representative 
hours for hourly power systems operations in a year. The 
decision variables can be categorized into design 
variables and operations variables. The design variables 
include the annual installation and deactivation for both 
the electricity generation and storage units, while the 
operations variables consist of the hourly power outputs 
from generators, electricity importation or exportation, 
and the charging and discharging activities of storage 
units.  

The objective of the proposed framework is to 
determine the optimal decarbonization transition 
pathway for power systems that minimizes the total 
electricity transition cost while considering both the 
annual changes and the hourly operations of the power 
systems. To apply the proposed framework, the 
following information is considered to be available and 
serves as the modeling parameters, including the current 
formulation of power systems in terms of the capacity, 
technology, and age of each existing generator or each 
electricity storage facility, renewable generation goals, 
greenhouse gas emissions targets, scheduled changes to 
power systems, availability of variable renewable 
energy, and a set of power generation and energy 
storage technologies, as well as their corresponding 
technological, economic and greenhouse gas emissions 
data. To ensure the reliability of future highly 
decarbonized power systems, electricity storage facilities 
are incorporated into the proposed framework to 
address the intermittency issues. Note that the 
electricity demands and supply are balances on an hourly 
basis for the representative hours in the operations 
years, considering power generation from each 

generator, electricity importation and exportation 
between the region of interest and its neighbors, and the 
charging and discharging activities of energy storage 
units. The overview of the proposed multi-scale bottom-
up renewable power systems transition model is shown 
in the next sub-section. 

2.2 Multi-scale bottom-up optimization framework 

The proposed framework includes two time scales to 
simultaneously optimize the systems changes and 
simulate the corresponding hourly operations, and it has 
a bottom-up structure so that multiple types of 
information for each existing or new unit in the power 
systems can be incorporated, such the technology, 
capacity, and age of a generator.  

The temporal overview of the proposed framework 
is presented in Fig 1. Two time scales are applied in the 
proposed framework, namely the design periods and the 
operations periods. In terms of the design periods, the 
planning horizon is equally partitioned on an annual 
basis, and the design decisions that include the additions 
and deactivations of generators and storage units should 
be determined for each year of the resulting design 
periods. To ensure the stability of power systems, hourly 
systems operations during the operations periods are 
incorporated in the proposed framework, while 
considering the changes to the electricity sector resulted 
from the design decisions.  

To reduce the computational challenges associated 
with optimizing the power systems changes and the 
hourly operations simultaneously for the entire planning 
horizon, a novel approach is proposed to obtain the 
representative days by coupling Principal Component 
Analysis (PCA) with clustering techniques that includes 
agglomerative hierarchical clustering (AHC), Gaussian 

 
 

Fig 1 Temporal overview of the multi-scale renewable 
energy transition framework. 
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mixture model (GMM), Dirichlet process mixture model 
(DPMM), and K-means clustering. The data being 
clustered is the 24-dimension hourly power loads for all 
days in a year, based on which we investigate the 
performances of using PCA coupled with each clustering 
approach, as well as the performances using the 
clustering approaches alone. The clustering 
performances are evaluated by three metric, namely 
intra-cluster variance, inter-cluster variance, and the 
Calinski-Harabasz index.  

As for the formulation of the renewable electricity 
transition model, the objective is to minimize the total 
discounted energy transition costs, which include the 
design costs and the operations costs for both power 
generation and energy storage, subject to energy 
demand and electricity storage balance constraints, 
energy availability constraints, power systems 
scheduling constraints, energy and emission target 
constraints, transition relationship constraints, transition 
capacity constraints, economic constraints, non-
negativity constraints, and binary constraints. 

3. CASE STUDY FOR NEW YORK STATE 

3.1 Data and information for the application 

To illustrate the applicability of the proposed 
framework, a case study on the renewable electricity 
transition for New York State is presented. The 
renewable electricity requirements as well as the climate 
targets for New York State are set following the state 
legislation. The technologies for power generation in the 
New York State case study include bituminous coal, fuel 
oil, methane from biogas, refuse of solid waste, utility 
solar PV, distributed solar PV, nuclear power, 
hydropower, on-land wind, offshore wind, natural gas 
combined cycle, natural gas combustion turbine, natural 
gas steam turbine, natural gas combined cycle with 
carbon capture and storage [7]. Three electricity storage 
technologies are included for the case study, namely 
lithium-ion batteries, flywheels, and pumped storage 
hydropower, which are current electricity storage 
technologies in New York State. Note that the proposed 
renewable electricity transition model has a bottom-up 
structure that include the individual generators and 
electricity storage units by technology and operations 
ages, so it is general enough to apply the proposed 
framework to other regions of interest. The generation 
and storage capacity data, the annual electricity 
generation projections, and the scheduled power 
systems changes for New York State are obtained based 
on a report from New York Independent System 

Operator (NYISO). In addition, the data on generation 
capacities for existing distributed solar PV in the state are 
collected following a work of New York State Energy 
Research and Development Authority (NYSERDA). The 
technological and economic data projections for the 
power generation and electricity storage technologies 
are collected from a study by the National Renewable 
Energy Laboratory (NREL). The hourly operations data for 
the state are obtained from NYISO energy market and 
operation data, while the hourly availability of solar, on-
land wind, and offshore wind are retrieved from a 
database of NREL. 

3.2 Obtaining representative days 

To obtain the representative days, we investigate the 
performances of using PCA coupled with multiple 
clustering approaches, including AHC, GMM, K-means, 
and DPMM, as well as using the clustering techniques 
without PCA. Three performance metrics are applied in 
this work, namely intra-cluster variance, inter-cluster 
variance, and Calinski-Harabasz index. Lower values of 
intra-cluster variance are preferred, while higher values 
of inter-cluster variance and Calinski-Harabasz index 
indicate better clustering results. The results are shown 
in Fig 2.  

For AHC, all three metrics are not as good as the 
other types of clustering techniques, regardless of 
whether it couples with PCA or not, while coupling PCA 
with other clustering techniques could improve the data 
grouping performances compared to using these 
techniques without PCA. This is owing to the 
effectiveness of PCA in capturing the correlations of the 
high-dimensional input data. Across all clustering 

 
 

Fig 2 Intra-cluster variance, inter-cluster variance, and 
Calinski-Harabasz index using PCA coupled with four 

clustering approaches under different numbers of principal 
components. Green horizontal lines indicate values of three 

metrics while applying the clustering techniques directly. 
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techniques and all performance metrics, an obvious 
trend is that higher numbers of principal components 
tend to provide better data grouping results than lower 
numbers. This is because the projections of data onto 
few principal components cannot effectively reflect the 
differences between the original data points. On the 
other hand, choosing the highest number of principal 
components does not guarantee the best data grouping 
results, potentially because of the influences from the 
values associated with the less effective principal 
components.  

Among all approaches tested, PCA coupled with K-
means with 9 principal components shows the best 
performance across all three metrics, so it is used to 
obtain the 25 representative days for an operations year. 

3.3 Computational optimization results 

The optimization programs of the renewable 
electricity transition problem using the proposed 
framework are coded in GAMS 27.3 on a PC with an Intel 
Core i7-8700 @ 3.20 GHz and 32.00 GB RAM, running on 
a Windows 10 Enterprise, 64-bit operating system. The 
energy transition planning is solved using CPLEX 12.9.0.0 
with an optimality tolerance of 1%. 

The problem has 4,889 integer variable, 2,294,943 
continuous variables, and 1,596,333 constraints. The 
optimal objective value is $ 96,343MM, and the solution 
process takes 12,294 CPUs. In addition, to validate the 
optimization results, power systems operations are 
simulated on an hourly basis for the entire planning 
horizon, based on the optimal transition pathways. The 
total transition cost under operations simulation is 
$97,729MM, indicating that the error bar of the 
proposed optimization framework is less than 1.5%. In 
addition, the simulation time for power systems 
operations is less than 70 seconds, which is significantly 
less than the optimization time for the transition 
optimization using the proposed framework, because 
the capacities of generators and storage units in each 
year are fixed the operations simulation. Consequently, 
the simulations for each year are independent to other 
years, leading to substantial reduction of computational 
requirements. 

3.4 Renewable electricity transition pathways 

The transitions of power generation capacity by 
source are shown in Fig 3 following the optimization 
result. offshore wind turbines and utility solar PVs 
account for the majority of power generation capacity by 
the end of the planning horizon. Specifically, offshore 
wind starts to participate in power generation at the year 

of 2024, and its total generation capacity remains 
relatively stable during 2025-2030. In the 2030s, the 
capacity of offshore wind power gradually increases until 
the end of the planning horizon. As for on-land wind, its 
total generation capacity gradually increases during the 
first five years of the transition, because multiple new 
on-land wind farms are scheduled to be constructed 
according to NYISO. Its capacity remains stable during 
2025-2035, and the capacity of on-land wind power 
begins to decrease in 2036, owing to both the economic 
reasons and the lifetime limits of 30 years, as there are 
on-land wind farms that started operation during the 
2000s. In terms of solar PV, the generation capacity of 
utility solar PV has no significant changes during the 
beginning years of the planning horizon, and it starts to 
increase after 2027. This is potentially because the 
annual electricity consumption in New York State is 
expected to decrease at the beginning years, owing the 
efficiency improvements across the state, while in 
comparison, total annual power load is projected to 
increase after 2027.  

On the other hand, distributed solar PV has a stable 
capacity across the planning horizon, which is owing to 
two reasons. Specifically, the economic efficiency of 
distributed solar PVs is not as good as utility solar PVs, 
and it would reduce the total transition costs to install 
utility solar PVs during generation capacity expansions, 
as both options have the same energy availability 
represented by hourly capacity factors. The other reason 
is that most distributed solar PVs are installed during the 
2010s, so the lifetime limits of 30 years would not result 
in noticeable decreases in the generation capacities, and 

 
 

Fig 3 Electricity generation capacity by source during the 
transition according to the optimal transition pathways. 
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it is not economically preferred to replace the existing 
distributed solar PVs by other types of generators owing 
to the high installation costs. In addition, a previous 
study working on the energy transition for both the 
electric and heating sectors for New York State suggests 
that offshore wind would be a major source of electricity 
in 30 years [6], and there are mainly three reasons for the 
seemingly different transition pathways. The first is 
reason is that the previous work focuses on the total 
annual electricity generated by different technologies, 
while Fig 3 only shows the generation capacity by source. 
In terms of annual electricity generation, the conclusion 
of this work is consistent with the previous work, 
suggesting that offshore wind power would provide 
more electricity than any other technology owing to its 
high capacity factor, which is to be illustrated in the later 
part of this subsection. The second reason is that the 
previous study involves both the electricity and the 
heating systems, and the electrification of the heating 
sector would considerably increase the power demands, 
which starts to become a significant amount of 
additional electricity after the year of 2040, namely the 
end of the planning horizon for this study. The third 
reason is that the previous work focuses on the annual 
energy balances, while this work involves hourly power 
systems operations. In this case, a potential drawback of 
offshore wind is that its availability can occasionally 
become much lower than its average, which would 
require more generation capacity using other 
technologies, such as utility solar, to compensate. 

Based on the optimization results, Fig 4 presents the 
hourly power demand and supply capacity for the year of 
2040, and hourly electricity supply by source during the 
representative hours in 2040. Note that the fluctuation 
of electricity supply capacity is significant, owing to the 
high penetration level of variable renewable energy, 
such as solar and wind. For the hourly operations during 
the representative days in 2040, solar PVs show clear 
periodic power outputs, because of the limited 
availability of solar energy during the evening. On the 
other hand, the power outputs from offshore wind show 
no clear intra-day correlations. In terms of energy 
storage, the charging and discharging activities are 
conducted frequently in large-scale, since the resulting 
power systems have high-level of intermittent 
generation capacities that require electricity storage 
operations to shift the power supply. 

The annual electricity generation from different 
technologies, net electricity importation, and energy loss 
of electricity storage are shown in Fig 5, based on the 
operations simulation results under the optimal 
transition pathways. Specifically, offshore wind would 
generate the most electricity by the end of the planning 
horizon, which is consistent with the existing literature 
[6], while hydropower and utility solar PV are the other 
two main generation technology in 2040. Note that 
although the total capacity of offshore wind is less than 
that of utility solar PV in 2040, as shown in Fig 3, offshore 
wind turbines tend to have much higher average capacity 
factors than utility solar PV, which enable them to 

 
Fig 4 Hourly power demand and supply capacity for the year of 2040 (a), and hourly electricity supply by source during the 

representative hours in 2040 (b). 
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generate more electricity on an annual basis. 
Hydropower currently accounts for most of the 
renewable electricity generation in the state, and it 
continues to provide stable electricity on an annual basis 
across the planning horizon, owing to its relatively stable 
total generation capacity over the planning years. The 
trends of annual electricity generation from utility and 
distributed solar PVs are consistent with the trends of 
their capacity changes in Fig 3. The net annual electricity 
importation gradually decreases over the next two 
decades, and this is potential because of the increasing 
penetration of variable renewable energy, such as solar 
and wind, as the marginal generation cost is zero for 
technologies based on these energy sources and is more 
economically favorable than imported electricity that 
has a price. Furthermore, note that the bars below zero 
indicate the electricity losses, which are negative values 
owing to the round-trip efficiencies of storage 
technologies that are between 80%-90%. 

In Fig 6, the annual greenhouse gas emissions of the 
electricity sector decrease almost linearly across the 
planning horizon, while the reduction rate at the 
beginning years are slightly higher compared to the later 
periods, which is potentially attributed to more 
deactivated fossil-based power generation capacities at 
the beginning of the planning horizon. Note that the 
greenhouse gas emissions reach zero in 2040, indicating 
that the goal of 100% decarbonized power systems is 
achieved under the optimal transition pathways 
obtained using the proposed framework. For electricity 
storage changes, lithium-ion battery has the highest 
storage capacity by the end of the transition process, 
owing to its higher economic efficiency compared to the 
other storage options under a planning horizon of 20 

years. The capacity of lithium-ion battery mainly 
increases during the first 5 years and during the 2030s, 
because the transitions of fossil-based electricity to 
generation from variable renewable energy are more 
significant in these years, which consequently requires 
more storage capacity to ensure system reliability. 
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Fig 5 Annual electricity generation by source, electricity loss 
from energy storage units, and net electricity importation, 

according to the operations simulation . 

 
Fig 6 Annual greenhouse gas emissions from electricity 

generation and electric energy storage capacities. 


