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ABSTRACT 
 The life and durability problems of proton exchange 

membrane fuel cell (PEMFC) have limited the 
commercialization process. The main reason for the 
degradation of life due to the frequent occurrence of 
local gas starvation in the dynamic process. The existing 
research is mainly carried out by experiment or 
simulation to diagnose local gas starvation, there is 
almost no research using machine learning methods to 
predict the local gas starvation through operating 
parameters.  To solve this problem, a snake-shaped 
five-channel PEMFC model is established in this paper, 
and obtained source data through CFD simulation. 
Principal component analysis and k-means clustering 
algorithm are used to effectively define the local gas 
starvation state of each sample point, and complete 
sample labeling. Five operating parameters 
(temperature, pressure, humidity, gas stoichiometric 
ratio and current density), were used as model inputs. 
Three machine learning methods are chosen for training 
and prediction, and compare their accuracy. The 
prediction accuracy rate based on the extreme learning 
machine regression model is the highest, which is 
93.49%, and have a fast prediction speed. It can quickly 
and accurately predict the local gas starvation state 
under a certain working condition, which has guiding 
significance for the optimization of operating parameters 
in the fuel cell control process. 
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1. INTRODUCTION 
To solve the problem of energy shortage and 

environmental pollution, many countries around the 
world have strengthened the research and development 
of new energy vehicles.  Proton exchange membrane 
fuel cell (PEMFC) uses hydrogen as fuel, has the 
advantages of high efficiency, zero emissions, rapid 
refueling and low operating temperature[1], its 
development prospects are widely recognized. When 
PEMFC is used as a fixed power source, the service life 
can reach 30,000 hours[2], while used as a vehicle power 
source, the service life is generally about 3,000 hours [3], 
which severely restricts the large-scale 
commercialization of fuel cells. Studies have shown that 
frequent local gas starvation during dynamic process are 
the main cause of fuel cell life degradation[4]. Therefore, 
the diagnosis and prediction of local gas starvation in 
PEMFC is of great significance to improve the life of fuel 
cells. 

Many scholars have conducted research on the 
diagnosis of local gas starvation in fuel cells. At present, 
the methods used for the diagnosis mainly include: 
voltage monitoring method[5], current density difference 
method[6], air excess coefficient method[7] and 
visualization method[8]. 

In the process of fuel cell operation, the external 
characteristic parameters such as fuel cell output 
parameters and operating parameters are easily 
collected. The effective diagnosis of local gas starvation 
in fuel cells through external characteristic parameters is 
helpful to reduce the occurrence of starvation, and there 
are still deficiencies in this type of diagnosis method. 
Using a suitable method to predict the local gas 
starvation is of great significance for improving the life of 
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the fuel cell. The prediction of the local gas starvation 
state through external characteristic parameters is a 
multivariate nonlinear prediction with tags. Using 
machine learning methods, a suitable regression model 
can be selected, to achieve rapid prediction of the local 
gas starvation state of the fuel cell under a certain 
working condition. 

Based on the previous analysis, this paper 
established a three-dimensional fuel cell model, and 
obtained source data through simulation. The gas 
starved area ratio is used as a measure of the degree of 
local gas starvation. The local gas starvation state of the 
fuel cell is effectively diagnosed based on the principal 
component analysis method and the K-means clustering 
algorithm. Then each sample was marked according to 
the clustering results, and 5 operating parameters 
(temperature, pressure, humidity, gas stoichiometric 
ratio and current density) were selected, compared a 
variety of machine learning methods, and studied the 
method of predicting the local gas starvation state of fuel 
cells through operating parameters. Accurate prediction 
models can effectively and quickly predict the local gas 
starvation state of fuel cells under certain operating 
conditions, provide guidance for optimizing the control 
and design parameters of fuel cells, which are of great 
significance for improving the life and durability of fuel 
cells. 

2. MODEL DEVELOPMENT 
First, a snake-shaped five-channel PEMFC model is 

established in this paper, which can not only accurately 
describe the internal mass transfer and heat transfer 
process of the fuel cell, and observe macroscopic 
physical quantities such as voltage, but also obtain the 
relevant gas distribution under different operating 
conditions, so as to calculate the proportion of gas-
starved area and measure the degree of local gas 
starvation. Operating parameters are randomly 
generated to ensure the uniformity of machine learning 
data. 

2.1 Geometry and mesh 

The PEMFC geometric model can be divided into 
three parts, including the anode, the proton exchange 
membrane, and the cathode. Both the anode and the 
cathode are composed of a plate, a flow channel, a gas 
diffusion layer and a catalyst layer, and are separated by 
a proton exchange membrane. Based on the 
assumptions of the model and the basic equations 
followed in [9], a snake-shaped five-channel PEMFC 
model is established, as shown in Figure 1(a). The 

geometric parameters are shown in Table 1. This paper 
used a hexahedral grid to divide the simulation model, 
divide and combine the grids of the flow channel, proton 
exchange membrane, catalytic layer, gas diffusion layer, 
electrode plate and gas inlet and outlet positions, as 
shown in Figure 1(b). By setting appropriate parameters, 
subsequent simulation calculations can be converged in 
a short time. 

 
 

(a) 
 

 
 

(b) 
Fig 1 Geometry and mesh 

 
Table 1 Geometric parameters 

Ridge 
width 

Channel 
width 

Channel 
thickness 

Land width 

0.8mm 1.2mm 0.8mm 32mm 

Membrane 
thickness 

GDL 
thickness 

Catalyst 
Layer 

thickness 

Graphite 
Plates 

thickness 

0.036mm 0.200mm 0.012mm 1.2mm 

2.2 Simulation conditions and model parameters 

In this paper, the independent variables are 
temperature, pressure, humidity, gas stoichiometric 
ratio, and current density, the physical quantities related 
to the operating state of the fuel cell are used as 
dependent variables. First, the above operating 
parameters are randomly combined within the range of 

reasonable working conditions，to obtain the original 
random working condition sample points. Then, the 
three-dimensional modeling simulation is carried out 
under the working condition of each sample point, other 
physical quantities of the fuel cell are obtained. The 
simulation sample points can cover as many working 
conditions as possible, so that the diagnosis conclusions 
obtained by the clustering model are more effective and 
accurate. 
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The range and resolution of each parameter of 
operating conditions are defined as follows: 

Temperature: 30~90°C, resolution is 1°C; 
Cathode inlet pressure: 0.3~3 bar, resolution is 0.1 

bar; 
Cathode humidity: 0.1-1, resolution is 0.1; 
Cathode gas stoichiometric: 1.2-4.0, resolution is 0.1; 
Current density:1-4A/cm2, resolution is 0.1A/cm2. 
Using the random number function in Matlab, the 

random number combination working conditions are 
uniformly generated according to the value of the 
resolution within the above range, so that the data in the 
test sample covers as many working conditions as 
possible. 

In order to ensure the accuracy of the subsequent 
clustering algorithm model and balance the time and 
resources required for the PEMFC simulation 
experiment, the sample size was finally set to 500 
groups. Among them, 10 groups of working conditions 
are set as forced gas starvation under the initial 
simulation conditions, that is, the amount of oxygen 
introduced is lower than the calculated amount of 
oxygen that should be introduced. Figure 2 shows the 
distribution of temperature and gas stoichiometric ratio 
in 500 combined operating conditions randomly 
generated. It can be seen that within the range of values, 
the combined operating conditions can cover most of the 
possible operating conditions. 

 
 

Fig 2 the distribution of temperature and stoichiometric ratio 

3. METHOD DESCRIPTION 
In this paper, the gas-starved area ratio was selected 

as a measure of the degree of gas starvation[10]. Then, the 
local gas starvation is effectively diagnosed based on the 
principal component analysis method and the K-means 
clustering algorithm. According to the clustering results, 
complete sample labeling for each sample point, 
compare three machine learning methods, and choose 
one method that can quickly predict the state of local gas 
starvation through operating parameters. 

3.1 Diagnosis of local gas starvation based on principal 
component analysis and K-means clustering 
algorithm 

The operating parameters of fuel cell will have an 
impact on the degree of gas starvation. In this paper, the 
data obtained by CFD simulation is used as the original 
data, and physical quantities that can directly reflect the 
operating state of PEMFC are selected as characteristic 
parameters. A diagnosis method combining principal 
component analysis method and clustering method is 
proposed to effectively diagnose and divide the local gas 
starvation conditions. 

Selected 12 characteristic parameters include: 
temperature, pressure, air stoichiometric, air intake flow 
rate, air intake relative humidity, current density, output 
voltage, oxygen molar concentration at the oxygen 
outlet, oxygen molar concentration at the oxygen inlet, 
the molar concentration of water at the oxygen outlet, 
the molar concentration of water at the oxygen inlet, and 
the ratio of starvation. 

To reduce invalid and repetitive calculations, it is 
necessary to reduce the dimensionality of the 
characteristic parameters, and select the characteristic 
parameters which best characterize the operating 
conditions of the PEMFC. In this paper, principal 
component analysis (PCA) is used to transform multiple 
indicators into a few comprehensive indicators, namely 
principal components. When the cumulative 
contribution rate of the principal components can reach 
90%, it can be considered that this part can represent 
most of the information in the original sample and can 
be used to characterize the overall source data. Finally, 
this paper selected the five principal components with 
the largest contribution rate as the input value for model 
training. 

The K-means clustering algorithm uses a certain 
distance between the sample data point and the 
prototype as the optimized objective function to classify 
the sample data. The initial cluster center and initial 
classification number k value are selected; then calculate 
the Euclidean squared distance of all source data 
samples, indicating the "degree of intimacy" between 
each sample. The Euclidean squared distance is: 

 𝑑𝑖𝑗 = ∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑃

𝑘=1  (1)  

Where 𝑑𝑖𝑗 represents the distance between the ith 

and jth samples; 𝑥𝑖𝑘represents the kth variable in the ith 

sample data point; and 𝑥𝑗𝑘is similar as 𝑥𝑖𝑘. 

In the traditional K-means algorithm, the selection of 
the initial clustering center is often random, which will 
have a greater impact on the subsequent iterative 
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calculation results, and the clustering results lack a 
certain interpretability for the diagnosis of local gas 
starvation. Therefore, this paper optimized the selection 
process of the initial clustering center, the sample point 
with forced gas starvation was selected as the cluster 
center. The proportions of gas-starved areas of the 
sample points after clustering were compared, and the 
results of K-means clustering were further analyzed. 

3.2 Prediction of local gas starvation based on machine 
learning methods 

The above-mentioned diagnosis method based on 
principal component analysis and K-means clustering 
algorithm can accurately define local gas starvation 
state, but cannot make rapid predictions in actual 
operating conditions. A suitable machine learning 
method can realize rapid prediction of local gas 
starvation state through several operating parameters. 

Based on the clustering results of 500 sample points 
in Section 3.1, the local gas starvation attribute of each 
sample point is defined as the "label". The 500 sample 
points are randomly divided into training set and test set, 
and three machine learning methods are used to predict 
local gas starvation state. 

The process steps of the machine learning model are 
shown in Figure 3: 

 
 

Fig 3 The process steps of the machine learning model 

 
3.2.1 Prediction of local gas starvation based on support 
vector machine regression model  

Using the support vector machine regression model 
to predict local gas starvation, it is necessary to find a 
separating hyperplane in a high-dimensional space. 
Based on the method of maximizing the interval, the 
hyperplane and the support vector that maximize the 
"distance" of the sample data point set are obtained. 
According to the obtained hyperplane and support 

vector, the regression model is used to classify the 
sample, and the prediction of the local gas starvation 
state is realized. For the training data set T: 
 𝑇 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} (2) 

Where 𝑥𝑖 ∈ 𝑅𝑛，𝑦𝑖 ∈ {+1, −1}， 𝑖 = 1,2, … , 𝑁，
𝑥𝑖 represents the ith feature vector, and 𝑦𝑖 represents 
two different markers. In this paper, it represents local 
gas starvation and non-local gas starvation. The 
expression of the hyperplane is as follows: 
 𝝎 ∙ 𝒙 + 𝑏 = 0 (3) 
3.2.2 Prediction of local gas starvation based on extreme 
learning machine regression model  

To predict the state of local gas starvation, the 
extreme learning machine model firstly initialize the 
number of neurons in the hidden layer, and randomly 
generate the values of ω and b. ω represents the 
connection weight between the input layer and the 
hidden layer, b represents the threshold of the hidden 
layer neuron; determine the activation function G of the 
hidden layer; calculate the output matrix H of the hidden 
layer; according to the output matrix H and the network 
output matrix T , The weight β of the output layer is 
calculated, and the trained extreme learning machine 
model is obtained. 

Through the feature mapping of activation function 
G, the output value of the extreme learning machine can 
be obtained: 

 𝑓𝐿(𝑥) = ∑ 𝛽𝑖𝐺(𝜔𝑖 ∗ 𝑥𝑖 + 𝑏𝑖)𝐿
𝑖=1  (4) 

L is the total number of samples. The diagnosis and 
prediction of the local gas starvation state is realized 
through the output value 𝑓𝐿(𝑥). 
3.2.3 Prediction of local gas starvation based on based on 
decision tree classifier  

To predict the local gas starvation, this paper 
selected the CART decision tree with Gini coefficient as 
the characteristic criterion to establish the prediction 
model. For the binary classification problem, the 
expression of the Gini coefficient of the probability 
distribution is as follows: 
 𝐺𝑖𝑛𝑖(𝑝) = 2𝑝(1 − 𝑝) (5) 

In the prediction process, the CART decision tree 
started from the root node, calculated the Gini 
coefficient of temperature, pressure, gas stoichiometric 
ratio, humidity and current density. Used the smallest 
feature attribute of Gini as the division feature of the leaf 
node, according to the value of the division feature, 
create a new leaf node, and continuously call the above 
division method to the new leaf node to establish a CART 
decision tree model. The CART decision tree 
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classification algorithm may overfit the test data set, 
leading to the low accuracy prediction result. Therefore, 
the CART tree needed to be pruned and optimized 
according to its complexity, to balance the fit of the 
sample data set and the complexity of the model. 

4. RESULTS AND DISCUSSION 

4.1 Diagnosis results based on principal component 
analysis and K-means clustering algorithm 

The data of 500 random operating points are 
obtained through simulation and processed by the 
principal component analysis method. Each sample is 
characterized by the principal components of 5 main 
classifications. According to the contribution of different 
principal components to distinguishing the distance 
between sample points, the corresponding weight 
coefficients are applied, and the most representative 
parameters of different sample points are obtained after 
superposition. From the 10 sample points of forced gas 
starvation, the sample point with the farthest 
representative parameter is selected as the initial 
clustering center of one of them for clustering. Divide all 
sample points into two types, calculate the ratio of the 
gas-starved area, as shown in Figure 4. 

 
 

(a)                   (b) 

 
Fig 4 The average gas-starved area ratio diagram of the two 

types of working conditions: (a) The first type of working 
condition (b) The second type of working condition 

 

Analyzing the clustering results, the average gas-
starved area ratio in Type 1 reaches 34.42%, and the 
average gas-starved area ratio in Type 2 is only 13.63%. 
The 10 sample points that are forced to be gas starvation 
are all in Type 1. Based on the actual situation, it can be 
considered that type one characterizes the working 
condition of local gas starvation for PEMFC, and type two 
characterizes non-local gas starvation. Among them, 
type one contains a total of 228 sample points, type two 
contains 272 sample points. The average gas-starved 
area ratio of 500 sample points in original is 23.11%, and 
the average gas-starved area ratio of sample points in 
type 1 after classification by the K-means clustering 
algorithm is 34.42%. It can be considered that the 

algorithm can effectively diagnose the local gas 
starvation conditions of the PEMFC. 

4.2 Prediction results based on machine learning 
methods 

The clustering result is used as the "label" of the 
sample point, that is, it is divided into a local gas 
starvation sample point or a non-local gas starvation 
sample point. The 500 sample points are randomly 
divided into a training set and a test set, of which the 
training set accounts for 80%, thereby completing the 
collection and labeling of the original sample data set. 
Choose different machine learning methods to train the 
data set and get the results. 

The input of machine learning model is five operating 
parameters (temperature, pressure, humidity, gas 
stoichiometric ratio and current density), the 100 sample 
points in the test set will get a predicted local gas 
starvation state, and the prediction accuracy of machine 
learning can be obtained by comparing the prediction 
results with the clustering results of each sample point. 

The prediction results of fuel cell local gas starvation 
based on support vector machine algorithm, extreme 
learning machine algorithm and decision tree algorithm 
are shown in Table2-4, respectively. 
Table 2 The prediction results of SVM 

Label 
Local gas 

starvation 
Non-local gas 

starvation 

Clustering 
result 

46 54 

Prediction 
result 

43 57 

 
Table 3 The prediction results of ELM 

Label 
Local gas 

starvation 
Non-local gas 

starvation 

Clustering 
result 

46 54 

Prediction 
result 

45 55 

 
Table 4 The prediction results of decision tree algorithm 

Label 
Local gas 

starvation 
Non-local gas 

starvation 

Clustering 
result 

46 54 

Prediction 
result 

39 61 

According to the clustering results, among the 100 
sample points in the test set, there are 46 sample points 
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with local gas starvation. By comparing the machine 
learning prediction results and clustering results of each 
sample point, it can be found that: the number of 
samples accurately predicted by the three machine 
learning methods are 41, 43, and 38, respectively. It can 
be seen that the prediction result based on the extreme 
learning machine model has the highest accuracy. 
Moreover, the algorithm does not need to adjust all 
parameters in iterations, so it has faster prediction 
speed. 

5. CONCLUSION 
This paper establishes a serpentine five-channel 

PEMFC simulation model, selects temperature, humidity, 
pressure, stoichiometric ratio and current density as 
independent variables, randomly generates 500 working 
condition sample points, and obtains source data from 
simulation. 

Based on the principal component analysis method, 
using the idea of dimensionality reduction, the 12 
working condition characteristic parameters are 
converted into 5 principal components. These 5 principal 
components can represent most of the information of 
the original data set, and the information contained in 
each other is not repeated; Based on the K-means 
clustering algorithm, the sample point with forced gas 
starvation is selected as the initial clustering center, and 
the sample data set is clustered into two categories. 
Through analysis, it can be proved that the clustering 
results can effectively define the local gas starvation 
conditions. 

Based on the clustering results, each sample point 
was marked, 500 working condition sample points were 
randomly divided into training set and test set. Three 
machine learning regression models were constructed, 
namely model based on support vector machine 
regression, model based on extreme learning machine 
regression and model based on decision tree classifier to 
predict the local gas starvation state. Comparing the 
results of the three machine learning methods, it is 
concluded that the prediction accuracy rates of the three 
regression models are 89.13%, 93.49% and 82.61%, 
respectively. The extreme learning machine regression 
model has the highest prediction accuracy, and the 
prediction speed is fastest, which is applicable to quickly 
predict the local gas starvation state of PEMFCs. 
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