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ABSTRACT 

With the Intelligent Connected Vehicle, Intelligent 
Transportation System and data mining technology, 
information sharing provides the feasibility for real-time 
application of global optimization energy management. 
To standardize the optimizing process, a framework of 
“Cyber-physical system - Dynamic Programming” (CPS-
DP) is proposed. Based on the Internet of Vehicles, the 
information from various physical subjects (mainly refer 
to drivers, vehicles, and roads) can be acquired from 
different scenarios. For the stochastic information, the 
“drivers-vehicles-roads” co-constraint model is proposed 
to determine the speed limits. Based on the available 
information, optimal power distribution is determined in 
the control system. The keys are to determine feasible 
work modes based on the “kinetic/potential energy & 
onboard energy” conservation framework and develop 
an effective global domain-searching algorithm. To verify 
the proposed method, a case study (WLTP) is given. 
Simulation results demonstrate that the proposed 
method gains a better performance in both real-time 
performance and global optimality. 
Keywords: cyber-physical system, standardization, real-
time application, global optimization, energy 
management 

1. INTRODUCTION 
To deal with energy shortage, environmental 

pollution, and carbon neutral problem, developing new 
energy vehicles is an inevitable choice for global 
automotive industry in the 21st century. To maximum 
the energy-saving potential of the multi-energy source 
vehicles (MEVs), the global optimization energy 
management came into being. 

Dynamic programming (DP) [1], as the typical 
optimization method, can obtain the theoretical optimal 
fuel economy. However, there exists four main 
challenges in practical application of DP strategy: 
standardization [2], real-time application, accuracy, and 
drivability. Owning to its reliance on future driving 
conditions (FDC) [3] and low computational efficiency, 
DP method can only be implemented offline. 

With the intelligent transportation system (ITS) and 
traffic flow monitoring systems, real-time and historical 
traffic information can be obtained from roadside 
sensors. Meanwhile, thanks to C-V2X, such as V2V 
(Vehicle-to-vehicle), V2I (Vehicle-to-Infrastructure), the 
basic information, such as vehicle state, vehicle-to-
vehicle communication, etc., are available. With the 
rapid development of data mining, the derived data, i.e., 
road characteristics, driving style, etc., can be extracted. 
The above information makes the acquired trip 
information more realistic and accurate. To avoid the 
adverse effects of optimal results against unknown 
cycles, the DP method is usually combined with global 
driving cycle construction [4], driving pattern recognition 
[5] or rule extraction [6] to develop an adaptive energy 
management strategy. According to the available 
information, access to future information can be 
classified into full, partial, or no future information. 
Under different information scenarios, how to acquire 
comprehensive and accurate information is the basis for 
implementing global optimization energy management. 

With the development of artificial intelligence (AI), 
data-driven control strategies, such as neurodynamic 
programming (NDP) [7], reinforcement learning (RL) [8], 
and adaptive dynamic programming (ADP) [9], are 
emerged to improve real-time performance while 
ensuring the sub-optimality of energy management 
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system. However, sufficient optimal results obtained by 
DP method are required as training samples. Thence, an 
efficient optimization algorithm is necessary to improve 
the real-time performance while ensuring the optimality. 

To standardize DP model, a unified state space 
model of DP is established in Ref. [2] based on the work 
modes of EVs/HEVs. The main steps and technical routes 
of DP strategy are concluded in Ref. [10]. Currently, in the 
context of the Internet of Vehicles (IOV) and automotive 
big data, a global optimization energy management 
architecture is necessary to avoid repetitive case studies 
with different vehicle configurations. 

To solve the above problems of DP strategy, a 
framework of “Cyber-physical system - Dynamic 
Programming” (CPS-DP) is proposed. The contribution of 
this paper mainly includes three aspects. First, a 
framework of CPS-DP is proposed to standardize the 
optimizing process of global energy management with 
informatization and intelligentization. For the stochastic 
information, a “drivers-vehicles-roads” co-constraint 
model is proposed to determine speed limits. Finally, 
under the “kinetic/potential energy & onboard energy” 
conservation framework, the optimal energy distribution 
is determined based on the global domain-searching 
algorithm. 

The remainder of this paper is organized as follows: 
Section 2 introduces the global optimization framework 
of CPS-DP. The simulation results and analysis under 
WTLP cycle are described in Section 3, and conclusions 
are drawn in Section 4. 

2. GLOBAL OPTIMIZATION FRAMEWORK 

2.1 The overall framework 

Essentially, global optimization energy management 
is based on the available trip information to produce the 
global optimal energy distribution by making full use of 
the characteristics of the vehicle. 

Thus, we regard drivers, vehicles, roads, networks 
and clouds as a cyber-physical system (CPS), which is a 
standard concept in industrial automation. Based on 
hierarchical thinking, a framework of "Cyber-Physical 
Systems - dynamic programming" (CPS-DP) is proposed. 

The framework consists of three main hierarchies, 
namely, cyber, physical, and control, and an application 
layer in the end. A schematic diagram is shown in Fig 1. 

2.2 Physical 

The physical refers to physical substances, mainly 
including drivers, vehicles, roads (environment). In terms 
of the roads, it mainly involves road infrastructures, 
traffic facilities, terrain, etc. Regarding the drivers, it 
reflects in different driving styles and driving habits. 

In terms of the vehicle, multi-energy source vehicles 
usually consist of engine, drive motor, power battery, 
and electronic control system. The vehicle modeling is a 
prerequisite for global energy management. In the 
longitudinal direction, the driving force in the driving 
process can be expressed as: 

𝐹஽ = 𝑚𝑔𝑓 𝑐𝑜𝑠 𝛼 +
𝐶஽𝐴 ⋅ 𝑣௖

ଶ

21.15
+ 𝑚𝑔 𝑠𝑖𝑛 𝛼 + 𝛿 ⋅ 𝑚

𝑑𝑢

𝑑𝑡
(1) 
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Fig 1 Schematic diagram of the global optimization framework (CPS-DP). 
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Where, 𝐹஽ is the driving force, 𝑚 is gross weight, 𝑔 is 
gravity acceleration, 𝑓 is rolling resistance coefficient, 
𝛼 is the road gradient, 𝐶஽ is air resistance coefficient, 
𝐴  is windward area, 𝑣௖  is vehicle speed, 𝛿  is the 
rotation mass conversion factor, and 𝑑𝑢 𝑑𝑡⁄  is 
longitudinal acceleration of the vehicle. 

For the power components, the experimental 
modeling method is used to develop the engine model 
and motor model without considering its dynamic 
characteristics. The engine model is simplified as a quasi-
static map to calculate the fuel consumption (𝑄௘), that is, 
                                   𝑄௘ = 𝐹௙௨௘௟(𝑇௘ , 𝑛௘)                            (2) 
Where, 𝑛௘ is engine speed, 𝑇௘ is engine torque. 

Similarly, the efficiency characteristics of motors can 
be formulated as: 
                                    𝜂௠ = 𝑓(𝑇௠, 𝑛௠)                              (3) 
Where, 𝜂௠ is motor efficiency, 𝑛௠ is motor speed, and 
𝑇௠ is motor torque, which is defined as positive during 
propelling and negative during regenerative braking. 

Without the consideration of temperature change 
and battery aging, an internal resistance battery model 
can be used to calculate the battery power. The state of 
charge (SOC) can be calculated by: 

    𝑆𝑂𝐶௞ାଵ − 𝑆𝑂𝐶௞ = −
𝑈௢௖ − ඥ𝑈௢௖

ଶ − 4𝑅௜௡௧ ∙ 𝑃௕௔௧

2𝑅௜௡௧ ∙ 𝐶
   (4) 

Where, 𝑆𝑂𝐶௞ାଵ  is the battery SOC at the moment 
(𝑘 + 1), and 𝑆𝑂𝐶௞ , 𝑈௢௖ , 𝑃௕௔௧ , 𝑅௜௡௧  are the SOC, open-
circuit voltage, electric power and internal resistance of 
the battery at the moment 𝑘, respectively. 

2.3 Cyber 

The cyber mainly refers to virtual substances, such as 
the internet and software. Based on the IOV, information 
from various physical subjects can be obtained. The trip 
information, including vehicle speed, slope, is the 
premise for global energy management. According to the 
available information, trip information is acquired from 
three scenarios: deterministic information, information 
with constraints, and information with historical data. 
2.3.1 Deterministic information 

For a MEV with a fixed line, trip information can be 
fully understood in advance with ITS and GPS (global 
positioning system). Simultaneously, the energy-saving 
potential of a certain vehicle configuration can be 
explored, which provides a benchmark for assessing the 
optimality of other energy management strategies. 
2.3.2 Information with constraints 

In real-world driving, the priori information generally 
depends on drivers, vehicles and roads, which are 
obtained by the telematics or the Internet. If the 

constraints on trip information are available, the possible 
value of the trip information at each moment (or 
location, the same as below) can be limited by 
constraints about the drivers, vehicles, roads, or 
combination constraints [11]. By comprehensively 
considering the constraints from the drivers’ driving 
style, dynamic performances of the vehicle, traffic flow 
and road conditions, the “drivers-vehicles-roads” co-
constraint model is proposed to determine the profile of 
each trip information, as shown in Fig 2. 

 
With regard to the vehicles, the constraints mainly 

arise from restrictions on vehicle dynamics, which are 
mainly characterized by maximum speed, acceleration 
capability, braking capability and startup time. In terms 
of the roads, the constraints mainly come from facilities 
(slope, intersections, turntables, gates, etc.), instructions 
(traffic lights, traffic signs, markings) and traffic 
regulations (i.e., speed restrictions). For example, 
according to traffic regulation of China, for expressways, 
the speed of three lanes (from left to right) cannot be 
lower than 110, 90, 60 𝑘𝑚 ℎ⁄ . 

The constraints about drivers are reflected in 
different driving styles and driving intentions. Driving 
styles can be classified into three types: aggressive, 
conservative, and stable. Driving intention means that 
the driver makes normal choices based on the results of 
interactions with the environment. 
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Fig 2 “Drivers-vehicles–roads” co-constraint model. 
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By combining the vehicles with the drivers, 
constraints are caused by different driving styles, which 
can be characterized by the expected acceleration (or 
deceleration) and the speed stability. By combining the 
drivers with the roads, the constraints are reflected in 
screening feasible routes, which depends on driving 
capability and road difficulty. Regarding the combination 
constraints of vehicles and roads, traffic flow reflects the 
smooth traffic or traffic congestion. According to the 
cumulative frequency curve of vehicle speed, the 85% 
speed and 15% speed are regarded as the maximum and 
minimum speed limit on a certain route, respectively. 

By comprehensively considering the drivers, vehicles 
and roads, the driving time and mileage of each feasible 
route are different. 
2.3.3 Information supported by history data 

Supported by historical driving data, the state 
transition probability matrix can be obtained to reflect 
the distribution of the trip information. 

Considering that route selection at multiple 
junctions conforms to the Markov property, a state 
transition probability matrix can be constructed based 
on the relative altitude and slope within a certain range 
at intersections. The probability matrix is defined as 
                       𝑇௜௝ = 𝑃ൣ𝜃௞ାଵ = 𝜃ሜ௝|𝐻௞ = 𝐻௜൧                     (5) 
Where 𝐻௞ is the relative altitude at the moment 𝑘, and 
𝜃௞ାଵ is the slope at the moment (𝑘 + 1). 

Similarly, the speed and acceleration are regarded as 
state variables to generate the state transition 
probability matrix for speed prediction. When the vehicle 
is driving, new driving data are used as training data to 
update the state transition probability matrix. 

2.4 Control 

DP, as a global optimization method, transforms a 
multiple-phases problem into multiple single-phase 
problems and solves optimization quickly through 
recurrence relation between each phase. 
2.4.1 Discretization of state feasible domain 

Since the DP model is a numerical solution, it is 
necessary to mesh the state feasible domain. It mainly 
includes determining: (1) the boundary of state feasible 
domain; (2) a suitable discrete interval (∆𝑆𝑂𝐶); (3) the 
number of state points; (4) the SOC matrix. To reduce the 
computational burden, a simplified state feasible domain 
is developed to narrow the exploring region. According 
to previous studies, we found that the optimal SOC 
trajectory obtained by DP strategy declines linearly as a 
whole. Thus, we set a reference SOC (𝑆𝑂𝐶௥), defined as: 
          𝑆𝑂𝐶௥(𝑘) = 𝑆𝑂𝐶଴ − ൫𝑆𝑂𝐶଴ − 𝑆𝑂𝐶௙൯ ∙ 𝑘 𝑁⁄         (6) 

Where, 𝑆𝑂𝐶଴  is the initial SOC, 𝑆𝑂𝐶௙  is the terminal 
SOC, 𝑁 is the total driving time, 𝑘 is the moment. 

The SOC range is set to 0.0625. Under multiple 
standard driving cycles, the maximum interval between 
the optimal SOC trajectory and the reference SOC 
trajectory is concluded in Tab 1. 

 
Based on above analysis, the maximum interval 

between optimal SOC trajectory and reference SOC 
trajectory is basically no more than 0.025. Particularly, 
for the driving cycle with uniform speed distribution, the 
maximum interval is basically no more than 0.01. To 
make the statistical rule more universal, simulations are 
performed under different vehicle models and various 
standard driving cycles. Based on the statistical rules, the 
state feasible domain can be simplified. The process is: 

(1) Regarding the reference SOC trajectory as the 
baseline, and the maximum internal width as the radius, 
a banded-searching domain is initially formed. 

(2) The available trip information is introduced to 
limit the maximum charging and discharging current, and 
then the simplified state feasible domain is formed. 
2.4.2 Determination of feasible work mode 

Based on mathematical analysis, a "kinetic/potential 
energy & onboard energy" conservation framework is 
put forward to determine the work modes between any 
two reachable state points. It can realize the one-to-one 
mapping of work mode and trip information. 

 
As shown in Fig 3, the vehicle speed and the change 

in mechanical energy (∆𝐸 ), kinetic energy (∆𝐸௞ ), and 
potential energy (∆𝐸௣) are regarded as external factors, 
while the change in battery SOC (∆𝑆𝑂𝐶 ) is taken as 
internal factor. The above factors are combined 
reasonably and feasibly to generate various trigger 
conditions. With each trigger condition, additional 
conditions can be added to determine the unique work 

Tab 1 The interval between optimal and reference trajectory. 
Cycles CSUDC UDDS NEDC WLTP HWEET 
width 0.0058 0.0088 0.0209 0.0245 0.019 
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Fig 3 Energy conservation framework. 
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mode of powertrain’s controllable components. 
Regarding the additional conditions, it mainly takes the 
sliding conditions and power comparison (between the 
power demand and the maximum allowable power of 
the motor or the engine) into account. 

Correspondingly, the fuel consumption and controls 
are determined under energy conservation framework, 
which are stored in the three-dimensional matrix. 
2.4.3 Optimal energy distribution 

By introducing the idea of graph theory, the optimal 
energy distribution problem is transformed into the 
shortest path problem from the starting point (initial 
SOC) to the ending point (terminal SOC). 

To improve the computational efficiency of DP 
algorithm, a global-searching domain algorithm is 
developed to output all optimal state points, which form 
an optimal state trajectory domain. It mainly includes 
sequential calculation and reverse searching. The 
solution process is shown in Fig 4. 

 
2.5 Application 

For the MEVs with single electric machine, the 
essence of energy management is to determine the 
optimal power split rate (𝑃𝑆𝑅), which is defined as the 
ratio of engine power (𝑃௘) and the required power (𝑃௥௘௤). 

Due to the diversity of driving cycles, a three-layer 
feed-forward neural network is applied to classify driving 
conditions. It inputs characteristic parameters of driving 
cycles, and outputs classification results (0/1/2), which 
correspond to urban, highway, and mixed driving 
conditions. To improve the real-time performance of DP 
strategy while ensuring the optimality, simulations are 
performed under multiple standard driving cycles. Then, 
the optimal results are regarded as samples to determine 
the optimal map ( 𝑃𝑆𝑅  graph), which takes vehicle 
speed, power demand and SOC as state variables. 

3. RESULTS AND DISCUSSION 

3.1 Example 

A plug-in hybrid electric vehicle (PHEV) with P2 
configuration is taken as the research object. Main 
component parameters of the PHEV are listed in Tab 2. 

 

 

 
The WLTP cycle is regarded as a combined cycle of 

urban and highway driving. The fuel consumption for 100 
kilometers under DP strategy is 2.2062 kg, equal to 
3.0935 𝐿/100 𝑘𝑚  (93#, 𝜌 = 0.725 𝑔 𝑚𝑙⁄ ). Based on 
the optimal results of simulations with different SOC 
range, the 𝑃𝑆𝑅 map (with sufficient SOC) is generated 
to realize the practical application, as shown in Fig 5. 
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Fig 4 Solution process of global domain-searching algorithm. 

Tab 2 Main parameters of the PHEV model. 
 Description Value 

Engine Displacement 1.5𝐿 
Maximum power/torque 64𝑘𝑊/142𝑁𝑚 

Motor Maximum power/torque 60 𝑘𝑊/458𝑁𝑚 
Battery Voltage/capacity 328𝑉/10.57𝑘𝑤 · ℎ 

Gear box Gear [3.45;1.98;1;0.75] 
Vehicle Gross mass/wheel radius 1500𝑘𝑔/0.334𝑚 

Windward area 2.25𝑚ଶ 
Final drive ratio 3.63 

Mechanical efficiency 0.92 
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Compared with DP, the simulation results based on 𝑃𝑆𝑅 
map are shown in Fig 6. 

3.2 Discussions 

To evaluate the energy-saving potential of the 
proposed control strategy, that is, the ability to utilize 
global trip information, a comprehensive performance 
index (r) is proposed based on the statistical dispersion 
between actual operating points and optimal operating 
points obtained by DP strategy. Due that the essence of 
energy management is to allocate the power between 
various components, for the parallel hybrid 
configuration, the index is formulated as: 

  𝑟 =
1

2𝑁
෍ ቈ

𝑚𝑖𝑛൛𝑃ா
௞ , 𝑃ா஽௉

௞ ൟ

𝑚𝑎𝑥൛𝑃ா
௞ , 𝑃ா஽௉

௞ ൟ
+

𝑚𝑖𝑛൛ห𝑃ெ
௞ ห, ห𝑃ெ஽௉

௞ หൟ

𝑚𝑎𝑥൛ห𝑃ெ
௞ห, ห𝑃ெ஽௉

௞ หൟ
቉

ே

௞ୀଵ

 (7) 

Where 𝑃ா஽௉
௞ , 𝑃ெ஽௉

௞  are the engine power and motor 
power at the moment 𝑘 under DP strategy; 𝑃ா

௞ , 𝑃ெ
௞  are 

the engine power and motor power at the moment 𝑘 
under the control strategy to be evaluated, respectively. 

Based on the simulation results of the proposed 
mothed, the comprehensive index is 𝑟 = 0.8585. That 
is, the energy-saving potential of this strategy reaches 
about 85% of DP strategy. 

4. CONCLUSIONS 
With the combination of drivers, vehicles, roads, 

networks and clouds, the real-time application of global 
optimization energy management becomes possible. A 
global optimization framework, namely “Cyber-physical 
system - Dynamic Programming” (CPS-DP), is proposed 
to standardize the optimizing process of DP strategy. 

Drivers, vehicles, and roads are regarded as the main 
physical subjects. The acquisition of information from 
various physical subjects has been made realistic with 
the Internet of Vehicles (IOV). According to the available 
information, trip information is acquired from three 
scenarios: deterministic information, information with 
constraints or historical data. Specially, for the stochastic 
information, a “drivers-vehicles-roads” co-constraint 
model is proposed to determine speed limits. With the 
fixed vehicle configuration, the optimal energy 
distribution is achieved. It mainly includes: (1) meshing 
the state feasible domain; (2) Determining the feasible 
work mode based on energy conservation framework; 
(3) Developing a global domain-searching algorithm. 

Simulations are performed under WLTP cycle. 
Regarding DP strategy as a benchmark, the energy-saving 
potential of the real-time control strategy can reach 
about 85% of DP strategy. 
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