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ABSTRACT 
 In this paper, the maximum charging or discharging 

current that the lithium-ion battery can withstand within 
safe voltage constraints, i.e., the peak current is 
researched. The equivalent circuit model is employed to 
describe battery dynamic. Three model parameter 
identifying methods are discussed to evaluate its 
influence on the peak current calculation. Results show 
that the parameter accuracy of both the offline and 
online methods is far lower than that of the optimization 
method. Moreover, the artificial intelligence is adopted 
to accelerate the prediction of peak current. The mean 
absolute percentage error of prediction results is only 
0.373% and 1.447% for charging and discharging process, 
indicating its validity and practicability. 
 
Keywords: lithium-ion battery, peak current, parameter 
identifying, artificial intelligence  
 

NONMENCLATURE 

Abbreviations  

AI Artificial Intelligence 
ECM Equivalent circuit model 
EV Electric Vehicle 
HPPC Hybrid Pulse Power Characterization 
IEA International Energy Agency 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
RLS Recursive Least Square 
RW Random Walk 
RMSE Root Mean Square Error 
SOC State of Charge 
SOP State of Power 
SQP Sequential Quadratic Programming 

Symbols  

𝐶𝐷  Polarization capacitance 
𝑖𝐿  Loading current 
𝑅𝐷  Polarization resistance 
𝑅𝑖  Resistor 
𝑈𝑡   Terminal voltage 
𝑈𝑜𝑐  Open circuit voltage 

 

1. INTRODUCTION 
With the increasing awareness of environmental 

protection, carbon emission and neutrality have drawn 
many attentions in recent years, becoming a global focus 
[1]. The transport industry, e.g. vehicle is responsible for 
nearly a quarter of worldwide greenhouse gas emissions 
according to International Energy Agency (IEA) in 2018 
[2]. Replacing the internal-combustion vehicles with 
electric vehicles (EVs) is forefront option, commented by 
IEA as one of the few technologies on track under the 
sustainable development scenario [3]. As one of the 
most important components in EV system, the effective 
monitoring and management of battery is of great 
concerns to manufacturers and customers, especially the 
peak current that battery can bear within a safe range. 
The peak current not only provide reference for 
maximum available power calculation and fast charging 
strategy formulation, but also instruct the safety 
operation of battery during charging and discharging 
process. Therefore, the accuracy assessing of peak 
current is of great importance to EV operation, which is 
also the basis of state of power (SOP) estimation [4][5].   

1.1 Review of the peak current estimation 

The commonly used peak current calculation 
method is hybrid pulse power characterization (HPPC) 
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method, yielding low accuracy because of the adoption 
of Rint battery model [6]. [7] proposed peak current 
estimation based on SOC constraint. Although this 
method is capable of describing the charging and 
discharging process of the battery, the calculated peak 
current is often larger when the SOC span increases. 
Methods based on voltage constraint and multiple 
constraints are also reported in references [7][8] with 
details. However, these methods have not considered 
the influences of battery dynamic and model 
parameters. As a result, the estimation accuracy is not 
reliable enough. Therefore, in this paper, three 
parameter identifying methods, i.e., offline method, 
online method and optimization method are discussed to 
evaluate its influence on peak current calculation. 
Moreover, the artificial intelligence is employed to 
improve the calculation process, realizing the fast and 
accurate prediction of peak current. 

1.2 Innovation 

The key contributions of this paper are 1) exploring 
the effect of model parameters on the peak current 
calculation, 2) proposing the optimization method to 
improve calculation accuracy, 3) employing artificial 
intelligence algorithms to speed up the prediction of 
peak current. 

1.3 Organization of the paper 

Section 2 describes the data sources. Section 3 
presents the influence of model parameter on 
estimation accuracy. The artificial intelligence algorithm 
used to improve calculation process is introduced in 
Section 4 while Section 5 gives conclusions and explores 
discussion. 

2. DESCRIPTION OF DATA SOURCES 
The data used in this paper was collected from the 

NASA Ames Prognostics Data Repository [9]. The test 
object is 18650 Li-ion batteries with upper and lower cut-
off voltage of 4.2V and 3.2V. The battery was 
continuously cycled with randomly generated constant 
current (from -4.5A to 4.5A) referred as random walk 
(RW) step. Each RW step lasted for 5 minutes until the 
voltage reaches the limited upper and lower voltage, 
shown in Fig. 1.  

Considering the characteristics of the data itself, 
method based on voltage constraints (explained in 
Section 3) is adopted to calculate the peak current. The 
criteria for peak current calculation are shown in Fig.2. It 
includes three cases, i.e., 5-minute case (Fig.2(a) and (d)), 
non-intersecting case (Fig.2(b) and (e)) and intersecting 

case (Fig.2(c) and (f)). In 5-minute case, the result is 
considered reliable as long as the calculated peak current 
is larger than the loading current during the RW step 
time. In non-intersecting case, the result is considered 
reliable if the difference between the calculated peak 
current and loading current is less than 0.1 A at the last 
sampling point. In intersecting case, it requires 1) the 
intersection time is no earlier than 5 seconds before the 
end time of RW step; 2) the difference between the 
calculated peak current and loading current is less than 
0.1 A at the last sampling point. It’s clear that the criteria 
for the peak current calculation in the case 2 and case 3 
are more stringent. Therefore, in the following section, 
325 RW steps less than 5 minutes (including 124 charge 
RW steps and 201 discharge RW steps) are taken as the 
research object. The peak current calculation results of 
those RW steps satisfying case 2 or 3 are considered 
accurate. 

 
Fig. 1 The loading current and voltage response of battery 
during a RW step. (a) A complete RW step with 300s; (b) RW 
step with the cut-off voltage triggered in advance. 
 

 
Fig. 2 The criteria for peak current calculation. (a-c) are the 
discharging RW steps; (d-f) are the charging RW steps. 

 

3. RESEARCH OF THE PEAK CURRENT 
Regarding the peak current calculation based on 

voltage constraints in a nonlinear battery system, 
method based on equivalent circuit model (ECM) is 
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considered as the tradeoff between efficiency and 
complexity [10]. In this paper, a 1-RC equivalent circuit 
model is adapted to describe the battery dynamics 
shown in Fig. 3. The electrical behavior of the ECM can 
be expressed as follows: 

 

{
𝑈𝑡 = 𝑈𝑜𝑐 − 𝑈𝐷 − 𝑅𝑖𝑖𝐿

�̇�𝐷 =
𝑖𝐿

𝐶𝐷
−

𝑈𝐷

𝐶𝐷𝑅𝐷
         

            (1) 

 
where 𝑅𝑖 is the resistor describing the electrical ohmic 
resistance of ion movement, 𝑅𝐷  is the polarization 
resistance and 𝐶𝐷  is the polarization capacitance. RC 
combination branch can represent the transient 
response, i.e., polarization effect during charging and 
discharging. 𝑈𝑡  is the terminal voltage and 𝑖𝐿  is the 
loading current (positive for discharging and negative for 
charging). The 𝑈𝑜𝑐 represents the open circuit voltage 
of the battery, mainly determined by the SOC. 

The discrete state-space equations of the equivalent 
circuit model can be further described as follows: 

 

 𝑈𝐷(𝑡 + ∆𝑡) = 𝑒
−
∆𝑡

𝜏𝑈𝐷(𝑡) + 𝑅𝐷(1 − 𝑒
−
∆𝑡

𝜏 )𝑖𝐿(𝑡)   (2) 
 
Where t represents the sampling time, ∆𝑡  is the 
sampling interval, 𝜏 =  𝑅𝐷𝐶𝐷. 

Then, the calculation of peak current based on 
voltage constraint is expressed as follows: 

 

{
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where 𝑖𝑚𝑎𝑥
𝑑𝑖𝑠  and 𝑖𝑚𝑖𝑛

𝑐ℎ𝑔
 are the discharging and charging 

peak current at time t when cut-off voltage is triggered.  

 
Fig.3 The 1-RC equivalent circuit model of lithium-ion battery 

 

It’s clear that the key element affecting the result of 
peak current calculation is the battery model parameter. 
In this paper, three different parameter identification 
methods, i.e., offline method, online method and 
optimization method are implemented to discuss its 
effect on peak current calculation result. As explained in 
section 2, the peak current calculation results of those 
RW steps satisfying case 2 or 3 are considered accurate. 
Count the number of accurate RW steps and divide by 
the total number 325 to get the overall accuracy, based 
on which the rationality and validity of these three 
parameter identification methods can be evaluated. If 
the overall accuracy of three methods are all lower than 
90%, it indicates the key to invalidity is the approach of 
peak current calculation based on voltage constraint, not 
the model parameters. Otherwise, it’s proven that the 
approach of peak current calculation based on voltage 
constraints is reasonable and the key to accuracy lies in 
model parameters. In this case, artificial intelligence 
algorithm can be further proposed to accelerate 
calculation and prediction rate. The research outline is 
shown in Fig. 4. 
 

 
Fig. 4 The research outline of peak current calculation 

 

3.1 Offline method 

The 𝑈𝑜𝑐  is an important parameter in ECM, 
primarily determined by SOC. The relationship between 
𝑈𝑜𝑐-SOC can be calculated referred to [11], expressed as 
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Eq. (4). The remaining parameters, i.e., 𝑅𝐷, 𝐶𝐷 and 𝑅𝑖 
are offline identified based on HPPC test, with more 
details described in [12].  

Fig.5 (a) shows the voltage difference of RW steps 
with offline method. Each point represents the average 
of the difference between the calculated terminal 
voltage and the measured terminal voltage at all 
samplings in a single RW step. The voltage difference 
remains approximately 0.061V throughout 325 RW 
steps, indicating that the 1-RC equivalent circuit model 
can reflect the voltage dynamic of the battery. The 
calculated peak current of 325 RW steps satisfied case 2 
or 3 is only 26 (including 10 charging RW steps and 16 
discharging RW steps), with an overall accuracy of 8%. 
This result proves that the parameter identified through 
offline method is inaccuracy regarding the peak current 
calculation. 

 

𝑈𝑜𝑐 = 𝑎0 + 𝑎1𝑍
1 + 𝑎2𝑍

2 + 𝑎3𝑍
3 + 𝑎4𝑍

4 + 𝑎5𝑍
5 +

𝑎6𝑍
6 + 𝑎7𝑍

7                                (4) 
 
where 𝑎𝑖 , 𝑖 = 1,2……7  are the fitting coefficients 
listed in Table 1 and 𝑍 represents the SOC. 
 

Table 1. The fitting coefficients of the polynomial fitting of 
the U𝑜𝑐 − 𝑆𝑂𝐶. 

Coefficient Fitting Value Coefficient Fitting Value 

𝒂𝟎 3.339 𝒂𝟒 −𝟐.𝟑𝟑𝟓 × 𝟏𝟎−𝟔 

𝒂𝟏 0.061 𝒂𝟓 𝟐. 𝟒𝟔𝟏 × 𝟏𝟎−𝟖 

𝒂𝟐 −𝟎.𝟎𝟎𝟒 𝒂𝟔 −𝟏. 𝟑𝟖𝟗 × 𝟏𝟎−𝟏𝟎 

𝒂𝟑 𝟏. 𝟐𝟔𝟖 × 𝟏𝟎−𝟒 𝒂𝟕 𝟑. 𝟐𝟔𝟗 × 𝟏𝟎−𝟏𝟑 

 

3.2 Online method 

Here, the recursive least squares (RLS) method is 
adopted to implement online parameter identification 
with algorithm details described in [13].  

Fig.5 (b) shows that the voltage difference of 325 
RW steps with online method approximately remain 
0.060 V. The percentage of voltage different defined as 
Eq. (5). Comparing to offline method, the fluctuation of 
voltage difference has been improved but with larger 
minimum, resulting in no RW step satisfied case 2 or 3. 

 

Percentage of voltage difference =  
| α− β|

β
       (5) 

 
where α and β are the calculated terminal voltage and 
the measured terminal voltage respectively. 
 

3.3 Optimization method 

In this part, Sequential Quadratic Programming 
(SQP) is employed for optimizing model parameter. The 
objective function is formed as the voltage difference 
between measured terminal voltage and calculated 
terminal voltage, expressed as Eq. (6). The optimization 
is realized by adjusting parameters to minimize the 
objective function. The algorithm steps and more details 
can be found in [14]. 

 
Minimize: f(X) = ∑ (𝑉𝑚𝑒𝑎

𝑡 − 𝑉𝑐𝑎𝑙
𝑡 )2𝑛

𝑡=1       (6) 
 

where X = [𝑅𝑖 , 𝑅𝐷 , 𝐶𝐷] , 𝑉𝑚𝑒𝑎
𝑡  and 𝑉𝑐𝑎𝑙

𝑡  are the 
measured and calculated terminal voltage at sampling 
time t. 

From Fig. 5(c) and Table 2, it’s clear that the voltage 
difference of 325 RW steps are greatly reduced. The 
number of RW steps satisfying case 2 or 3 is as high as 
302 (including 124 charging RW steps and 178 
discharging RW steps), and the overall accuracy reaches 
92.9%. 

 
Table 2. The voltage difference and overall accuracy 

comparison of three methods 

 Minimum / V Maximum / V Mean / V 
Overall 

accuracy 

Offline 0.005 0.179 0.061 8% 

Online 0.015 0.107 0.060 0% 

Optimization 𝟏. 𝟔𝟔 × 𝟏𝟎−𝟒 0.096 𝟏. 𝟔 × 𝟏𝟎−𝟑 92.9% 

 

 
Fig.5 The average of the difference between calculated 
terminal voltage and measured terminal voltage. (a) Offline 
method; (b) Online method; (c) Optimization method 
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Comparing the overall accuracy based on three 
different parameter identification methods, the 
following conclusions could be inferred: 1) the approach 
based on voltage constraints can undoubtedly calculate 
the peak current as long as the battery model 
parameters are accurately identified. 2) the parameters 
identified through optimization method are more 
accurate than those calculated by the offline and online 
methods. 3) given the minimum value of voltage 
difference based on offline and online methods, as well 
as their overall accuracy, the model parameters should 
keep the voltage difference on the order of 0.001 to 
make it possible to calculate the peak current accurately. 
 

4. PREDICTING PEAK CURRENT USING AI 
Matlab 2019b was used in the optimization method 

running on Intel(R) Core (TM)i7-9700 CPU @ 3.00GHz 
with RAM 16.0GB. The average consuming time for each 
RW step in optimization is about one minute, greatly 
limiting the practical application of this method. In this 
section, artificial intelligence, i.e., LightGBM is chosen to 
establish the peak current prediction model so as to 
calculate the peak current quickly by feeding variables, 
e.g., voltage, current and SOC. LightGBM is an open-
source implementation of a gradient boosting 
framework that uses a sequence of trees to solve 
classification or regression models [15].  

The 124 charging RW steps and 178 discharging RW 
steps were divided into training set, verification set and 
test set, with the proportions of 60%, 20% and 20% 
respectively. The AI model employed here is trained 
based on LightGBM Python-package [16]. The consuming 
time for training, validation and prediction are less than 
one minute for 124 charging RW steps and 178 
discharging RW steps. The information feed into 
LightGBM contains SOC, voltage, temperature, capacity 
and current. The output is the peak current of each 
sampling point. Fig. 6 shows the prediction result of the 
test set. The calculated peak current based on 
optimization method is considered as true value and the 
predicted peak current is the output of LightGBM model. 
The mean absolute error (MAE), root-mean-square error 
(RMSE) and mean absolute percentage error (MAPE) of 
peak current are listed in Table 3. As we can see, the 
predicted peak current of both charging and discharging 
test set can accurately track the true value. Moreover, 
the MAE, RMSE and MAPE of charging RW test set are all 
less than that of discharging RW test set, indicating the 
better training result of charging process in LightGBM 
model. The MAE of predicted peak current in charging 

and discharging test set are 0.056 A and 0.125 A, 
accounting for only 0.373% and 1.447% of true value 
respectively, which proves the potential utility of AI 
algorithm in future cloud computing application.  
 

Table 3. The prediction error of test set in LightGBM 
 MAE RMSE MAPE 

Test set of charging RW steps 0.056 0.095 0.373% 
Test set of discharging RW steps 0.125 0.247 1.447% 

 

 
Fig. 6 The prediction result of LightGBM. (a) Charging RW 
steps;(b) Discharging RW steps. 

CONCLUSION AND DISCUSSION 
In this paper, three model parameter identifying 

methods are adopted and discussed for their influence 
on the peak current calculation. The results indicate that 
the parameter identified through optimization method 
are far more enough than offline and online method to 
calculate peak current accurately, further demonstrating 
the validity of peak current calculation approach based 
on voltage constraints. AI algorithm, i.e., LightGBM is 
also employed to predict the peak current. Results show 
that the prediction can greatly track the peak current 
with MAPE of 0.373% and 1.447% for charging and 
discharging process respectively, proving the potential 
utility of this AI algorithm in future cloud computing 
application. 

In all, the peak current calculation method 
proposed in this paper can accurately calculate and 
predict the peak current during battery operation. 
Priorities for future work should focus on several 
limitations, e.g., 1) improve the optimization algorithm 
efficiency to reduce the consumption time of model 
parameter identification. 2) construct comprehensive 
battery database including input features (not limit to 
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the SOC, voltage, temperature, capacity and current) and 
corresponding peak current. In this case, it could be 
practical to employ AI technology in actual battery 
detection and management to realize fast and accurate 
calculation of the peak current. 
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