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ABSTRACT 
This paper proposes an integrated framework to 

achieve a simultaneous real-time reduction of 
occupants’ thermal dissatisfaction and room HVAC 
energy consumption. The framework can optimize the 
HVAC setpoint temperature according to the internal 
heat gains predicted by a vision-based approach. When 
there are no occupants found by cameras, this 
framework will just turn off HVAC systems to reduce 
energy consumption. When occupants are present, the 
framework will determine an optimal setpoint 
temperature to balance occupants’ thermal satisfaction 
and room HVAC energy consumption. During the 
simulated four days in the winter in a temperature 
climate, the utilization of this framework can lead to a 
reduction of heating energy by up to 36.8% and 
occupants’ thermal dissatisfaction by up to 5.26%. 
During another simulated four days in the summer, the 
cooling energy savings would range from 3.5% to 33.9%, 
whilst occupants’ thermal dissatisfaction could be 
decreased by 0.17-2.89%. 

Keywords: Artificial intelligence, HVAC setpoint 
adjustment, building internal gains prediction, building 
energy reduction, occupants’ comfort satisfaction. 

NONMENCLATURE 

Abbreviations 

HVAC 
Heating, ventilation and air 
conditioning system 

SNN Shallow neural network  

PPD Predicted percentage dissatisfied 

1. INTRODUCTION
1.1 Background

Nowadays, it is widely accepted that buildings can 
account for over 30% of energy use and greenhouse gas 
emission [1]. In particular, it is realized that heating, 
ventilation and air-conditioning (HVAC) systems are the 
main contributors to the high energy consumption of 
buildings. HVAC systems are responsible for providing 
occupants with a thermally satisfying environment. 
Therefore, simultaneously increasing the energy 
efficiency of HVAC systems without compromising 
occupants’ thermal satisfaction has become an essential 
research topic.  

A large number of studies showed the benefits of 
optimizing the setpoint temperature of HVAC systems. In 
HVAC systems [2-4], the setpoint temperature is one of 
the key factors influencing occupant’s thermal 
satisfaction but also energy consumption of the systems. 
In general, the optimal setpoint temperature is derived 
by balancing the trade-off relationship between the 
energy consumption of HVAC systems and occupants’ 
thermal satisfaction. 

1.2 Research gap 
Based on a literature review of the previous studies 

[3-5], there are two realized problems. Firstly, the 
previous studies assumed that the internal heat gains in 
buildings were constant or even zero [5]. Because of 
inevitable and stochastic occupants’ behaviors, internal 
heat gains in real life is more complicated. Although this 
assumption can simplify the complexity of the 
optimization problem, it is also very likely that this 
assumption would influence the optimal setpoint 
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temperature derived. Secondly, the previous studies 
were dependent on building energy simulation tools, 
making the real-time setpoint optimization much harder.  

Currently, the two problems realized can be 
overcome by adopting prevailing artificial intelligence 
techniques. Our previous work showed the possibility of 
identifying real-time building internal heat gains by 
implementing vision-based cameras [6-7]. In this paper, 
heavy building energy simulation tools were replaced by 
shallow neural networks (SNNs) when optimal setpoint 
temperature was derived. Because SNNs require low 
computation cost and responses fast, they can be 
efficiently connected to vision-based cameras. This 
connection enables a good utilization of real-time 
internal heat gains and real-time HVAC setpoint 
optimization.  

 
1.3 A combined framework  

This paper develops an integrated framework 
comprising of six modules: images capture, real-time 
internal gains generation, room energy estimation, 
occupants’ thermal satisfaction estimation, HVAC 
setpoint optimizer and setpoint controller. The details of 
the framework are described in subsection 2.5.  

2. METHODOLOGY 
In subsection 2.1, images capture and real-time 

internal gains generation are introduced. Subsection 2.2 
shows the building energy simulation tool as a data-
provider. Subsection 2.3 demonstrates the development 
of predictive energy and comfort models. Section 2.4 
describes HVAC setpoint optimizer. Section 2.5 shows 
the proposed integrated framework. 

 
2.1 Images capture and internal gains identification  

In our previous works [6-7], vision-based cameras 
were used to identify the indoor activity of occupants 
and equipment. The cameras were deployed in a seminar 
room in the sustainable research building in Nottingham, 
UK, from Jan 8th – 11th. The cameras generated a real-
time internal gains profile based on the captured images, 
as shown in Fig 1.  
 
 
2.2 Building energy simulation tool and setup  

In this paper, a building energy simulation tool called 
integrated environmental solution virtual environment 
(IES VE) was used to model the energy and comfort 
performance of the room where cameras were 
deployed. The obtained simulation data would be used 
to develop predictive energy and comfort models. 70 

simulation scenarios were created to investigate the 
relationship between HVAC setpoint temperature, HVAC 
energy and occupants’ thermal dissatisfaction. They are 

shown in Table 1. 
 

 
2.3. Energy and comfort modelling by SNNs 

In this paper, four predictive models were developed 
based on shallow neural networks (SNNs). They were 
winter heating energy model, summer cooling energy 
model, winter comfort model and summer comfort 
model, respectively. They were developed by using 
MATLAB neural fitting tool GUI. Particularly, there were 

Table 1 The created 70 simulation scenarios for 
acquiring data 

 

Scenario  Description  Purpose 

1-25 
5 heating setpoints 
× 5 internal gains 
profile 

Develop 
predictive 
heating and 
cooling energy 
models 

26-50 
5 cooling setpoints 
× 5 internal gains 
profile 

51-55 
5 heating setpoints 
× The generated 
internal gains profile 

Verify the 
developed 
predictive 
heating and 
cooling energy 
models 

56-60 
5 cooling setpoints 
× The generated 
internal gains profile 

61-65 
5 heating setpoints 
(clo=1) 

Develop 
winter and 
summer 
comfort 
model 

66-70 
5 cooling setpoints 
(clo=0.5) 

 

 

 
 

Fig 1 The generated internal gains profile 
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8 inputs to predictive heating and cooling modes: 
outdoor air temperature, wind speed, direct radiation, 
diffuse radiation, internal gains, HVAC setpoint, annual 
time step and daily time step. Based on the trial-and-
error method, adding annual and daily time steps could 
significantly improve the fitting performance of SNNs. 
The inputs to the predictive comfort models were HVAC 
setpoint and the relative air humidity. To keep the 
models lightweight without compromising their 
effectiveness, there were only 10 hidden units in 1 
hidden layer.  

 
2.4. Setpoint optimizer and optimization rules 

The role of setpoint optimizer is to determine the 
optimal setpoint temperature according to a internal 
heat gains identified by vision-based cameras. Simply, 
there are two optimization rules. When occupants are 
absent, internal heat gains from occupants shall be zero 
and there is no need of heating or cooling. Therefore, the 
optimal setpoint temperature under this situation would 
be -60℃ in winter and 100℃ in summer.  

 
When occupants are present and identified by the 

cameras, heating or cooling shall be provided. Under this 
situation, optimal setpoint temperature is determined by 
referring to a performance indicator, called distance 𝐷, 
presented in equation (1)-(3). Based on the predictive 
energy models developed, HVAC energy consumption 
can be written as a function of HVAC setpoint 
temperature, shown in equation (1). Similarly, 
occupants’ thermal dissatisfaction, i.e. PPD, can also be 
represented as a function of HVAC setpoint temperature, 

shown in equation (2). Depending on equation (1)-(2), 
equation (3) shows a performance indicator 𝐷 used to 
quantify the goodness of a setpoint temperature. In this 
paper, it is assumed that a setpoint temperature with a 

lower 𝐷 has better performance than the one with a 
larger 𝐷. When looking for the optimal setpoint 
temperature, a number of different setpoints in the 
acceptable ranges were generated, and the setpoint with 
the lowest 𝐷  was chosen as the optimal setpoint 
temperature.  
 

To show the superiority of applying optimal setpoint 
temperature, 22 cases were set up, as shown in Fig 2. In 
the case, 1-5, Fixed heating setpoint profile with 
different setpoint temperatures was used. In case 6-10, 
a flexible heating setpoint profile was used. In this 
profile, the setpoint temperature would be -60 ℃  if 
cameras identified no occupants. In case 11, the optimal 
heating setpoint profile was adopted. Similarly, an 
optimal cooling setpoint temperature profile was used in 
case 22.  
 
2.5. An integrated framework 

Fig 3 shows the integrated framework.  

 
Fig 2 The explanation of created cases to show the superiority of optimal setpoint temperature profile 

𝐸𝑛𝑒𝑟𝑔𝑦𝑡 = 𝑓(𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑡) Equation (1) 
𝑃𝑃𝐷𝑡 = 𝑓(𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡𝑡) Equation (2) 

𝐷𝑡 = √(𝐸𝑛𝑒𝑟𝑔𝑦𝑡)2 + (𝑃𝑃𝐷𝑡)2 Equation (3) 
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3. RESULTS AND DISCUSSION 
3.1 Predictive energy and comfort models developed 

The fitting performance (R2) of the four developed 
predictive models are all larger than 0.95 on training, 
validation and test datasets. 
 

In the scenario 1-50, fixed internal gains profile was 
used. In order to ensure that the developed predictive 
energy models were able to learn the relationship 
between internal gains and HVAC energy consumption, 
the models were verified. In the scenario 51-60, the 
generated internal gains profile was used. Figure 4 
compares the simulated and predicted energy 
consumption under the scenario 51 and 56. As can be 
seen, the simulated and predicted energy curves shared 
a very similar profile. The verification results are shown 
in Table 2. Because the R2 in scenarios 51-60 were higher 
than 0.85, it was believed that the developed models 
were effective in predicting energy consumption based 
on real-time internal gains. 

 

 
Fig 3 The integrated framework: real-time internal gains identification and HVAC setpoint optimization 

 

 
Fig 4 Comparison of energy between simulations and 
predictive energy models (Left) heating load in scenario 
51, setpoint 19℃. (Right) cooling load in scenario 56, 
setpoint 21℃. 

Table 2 The verification of the developed predictive energy models using the generated internal gains profile 

Scenario 51 52 53 54 55 56 57 58 59 60 

Setpoint 
(℃) 

19 19.5 20 20.5 21 21 21.5 22 22.5 23 

R2 0.886 0.889 0.89 0.853 0.890 0.972 0.971 0.969 0.968 0.960 
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3.2 Optimal setpoint profile and benefits  
The optimal setpoint profile is shown in Fig 5.  

The benefits of adopting the optimal heating 
setpoint profile are demonstrated in Figure 6. Based on 
a visual inspection of cases 1-5, it is noticed that as 
heating setpoint temperature increased, the total 
heating energy increased, but the averaged PPD 
decreased. This suggests that a high heating setpoint 
temperature was good to reduce the occupants’ thermal 
dissatisfaction. As for cases 6-10, the utilization of the 
flexible setpoint profile led to noticeable energy savings 
while the PPDs were hardly influenced. In case 11, where 
the optimal setpoint profile was used, the total heating 
energy was 608.8 kW, higher than the case 6-9 but lower 

than case 10. This was the cost of increasing occupants’ 
thermal satisfaction. Among all cases, case 11 has the 
lowest PPD value, 4.31%. Compared to cases 1-5, using 
the optimal heating setpoint profile provided savings of 
heating energy between 3.8-36.8%, whilst PPD was 
improved by 5.26-0.01%.  

 
The benefits of adopting an optimal cooling setpoint 

profile are shown in Figure 7. It is noticed that generally, 
a higher cooling setpoint temperature led to a lower 
cooling energy consumption. In addition, the utilization 
of flexible cooling setpoint profile in case 17-21 can 
slightly minimize cooling energy consumption. 
Compared with case 12-16, case 22 achieved both the 
lowest PPD and cooling energy. As a result of using 
optimal cooling setpoint profile, savings of cooling 
energy were between 3.5-33.9 and occupants’ thermal 
dissatisfaction can be declined by between 0.17-2.89%.  
 

3.3 Assumptions and limitations 
Some assumptions and limitations of the prospoed 

framework are discussed in this section. Assumptions 
regarding to geometry, thermal parameters and 
ventilation strategy of the room investigated were made 
in order to simplify the complexity of room models. 

 
In addition, it is suggested further improving or 

upgrading the framework with following considerations. 
(1) all the predictive energy and comfort models in the 
framework were simulation-based and data-driven. On 

 
Fig 5 Optimal setpoint temperature profile (left) 
Heating (right) Cooling 

 
Fig 6 The comparison of heating energy and comfort performance between case 1-11 
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the one hand, the simulation results require further 
verification in the future. On the other hand, the 
predictive comfort models need more investigation to 
increase their reliability. In this paper, the averaged PPD 
appear to be less than 5% in some cases. It must be 
noticed that the theoretical minimum of PPD is 5%. 
Therefore, the estimated improvement of PPD in this 
paper can be slightly overestimated. (2) efforts should 
also be made to conducting a longer real-time 
identification of internal gains profile. (3) The proposed 
framework should also be tested on different types of 
rooms, buildings and climate. 

 

4. CONCLUSIONS AN FUTURE WORKS  
This paper proposes an integrated framework to 

effectively reduce occupants’ thermal dissatisfaction and 
room HVAC energy consumption. The framework can 
change the HVAC setpoint temperature according to the 
internal gains obtained by vision-based cameras. It was 
estimated that during the monitored four days in 
January, the proposed framework was able to potentially 
offer savings of heating energy between 3.8-36.8% and a 
reduction of occupants’ thermal dissatisfaction by 
between 5.26-0.01%. For another four days monitored in 
August, the savings of cooling energy would be between 
3.5-33.9% and occupants’ thermal dissatisfaction could 
drop by 0.17-2.89%. Future work should focus on 
experimentally verifying the predictive energy models 
and putting the framework into practice.  
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Fig 7 The comparison of cooling energy and comfort performance between case 12-21 


