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ABSTRACT 
Electric vehicles, including hybrids, will domain the 

road transport in future cities. Reinforcement learning 
has shown its capacity in online optimization of energy 
management strategy for hybrid vehicles. Exploration of 
new control settings and exploitation of the existing 
control policy are two key procedures in reinforcement 
learning but there is a lack of study on how the 
exploration-to-exploitation (E2E) ratio affects the energy 
efficiency improvement for hybrid vehicles. This paper 
introduces two decay functions, ‘Reciprocal function-
based decay’ (RBD) and ‘Step-based decay’ (SBD), to 
generate E2E ratio trajectories for reinforcement 
learning algorithm which is conventionally based on 
Exponential decay (EXD) function. By monitoring the 
improving rate of vehicle energy efficiency in the learning 
process, the vehicle controlled by Q-learning algorithm 
based on the SBD function has shown the best compared 
with the vehicles based on the RBD function and the EXD 
function. The improving rate can be more than 6.21%. In 
the HiL testing, the SBD can save 1.52% energy compared 
to the EXD in real-time control under a predefined 
driving cycle. 
 
Keywords: Vehicle energy efficiency, Reinforcement 
learning, Hybrid electric vehicle, exploration-to-

exploitation ratio  
 

1. INTRODUCTION 

With the aim to eliminate greenhouse gas (GHG) 
and reduce energy consumption [1], transportation has 
been deemed to take responsibility for this problem due 

to almost automobile derived by the internal combustion 
engines (ICE). Recently, the hybrid electric vehicle (HEV) 
is considered a booming solution for acquiring low-
recourse consuming and environment-friendly due to 
their high vehicle’s energy efficiency and low CO2 
emission [2]. It generally consists of two energy sources, 
including an internal combustion engine (ICE) and a 
battery pack, which provide a better mileage in normal 
life driving. Energy management system (EMS) plays a 
crucial part of the HEV, which efficiently disturbs the 
energy flow of the powertrain within the system of 
multiple power components [3]. 

Rule-based methods are widely applied to 
commercial HEVs because of the less memory 
requirements. The control rules are mainly designed 
based on intuition, human experience, and 
mathematical models. However, owing to the uncertain 
driving conditions, the control rules are required 
calibrations more frequently to achieve better 
adaptatively under various worldwide driving conditions. 
As an alternative, optimization-based methods are 
necessarily needed to guarantee the energy distribution 
under any driving conditions [4]. Other offline 
optimization algorithms (e.g. modified accelerated 
particle swarm optimization (MAPSO) [5], swarm 
optimisation (PSO) [6] genetic algorithm (GA) [7] and 
dynamic programming (DP) )are typical global algorithms 
as a benchmark for the HEVs in given driving cycles [8]. 
However, the above optimal algorithms usually require 
an informative prior knowledge of entire driving 
conditions, which is not able to carry out in online real-
time control. Therefore, online optimization-based 
control methods have been become an urge concern for 
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HEVs. The model predictive control (MPC) has been 
implemented for HEVs to obtain an optimal solution in 
real-time control [9]. However, a precise models (e.g., 
ageing, changing of drivers) and huge computational 
capability are obvious drawbacks for the MPC [10]. 

In recent years, learning-based optimal algorithms 
have been widely applied in many research areas such as 
Robotics controls [11] driver-classification [12], imaging 
process [13] and Gaming [14]. Reinforcement learning 
(RL) methods have been validated that it can lead to 
significant improve in the energy efficiency of hybrid 
electric vehicles due to its model-free and self-learning 
ability [15].  

Q-learning is a widely used reinforcement learning 
method, and it has been implemented in optimal control 
strategy for the EMS of HEVs. Liu et al. implemented the 
Q-learning method to EMS in various topologies (e.g. 
parallel hybrid powertrain [16], power-split powertrain 
[18] ) of hybrid powertrains. Zhou et al. proposed a multi-
step learning-based control method [19]and a novel 
adaptive learning network [20] to improve the HEVs 
control strategy in real-time driving. The deep 
reinforcement learning method is also applied to EMS for 
Eco-driving [21], Du et al. proposed a new framework for 
achieving experience sampling more reasonable [22]. 
Zou et al. carried out a combination between model 
predictive control and deep network to accelerate the 
learning speed [23]. However, these two exploration-
exploitation policies are not completely biased, they are 
still having some difficulty in balancing the exploration-
exploitation process [24], especially on how to define the 
value of the deciding factor in epsilon-greedy policy to 
achieve an optimal control strategy. Conventional Q-
learning usually implements an exponential decay (EXD) 
function to control the exploration to exploitation (E2E) 
ratio [25]. To best of author’s knowledge, there is a lack 
of study on how the exploration-to-exploitation (E2E) 
ratio affects the energy efficiency improvement for 
hybrid vehicles.  

This paper has two main contributions: 1) two new 
E2E ratio decay functions, ‘Reciprocal function-based 
decay’ (RBD) and ‘Step-based decay’ (SBD), are 
introduced to generate E2E ratio trajectories for 
reinforcement learning algorithm which is 
conventionally based on Exponential decay (EXD) 
function; and 2) the energy saving potentials of different 
E2E ratio decay functions are quantified by monitoring 
the improving rate of vehicle energy efficiency during the 
reinforcement learning process.  

The remainder of the paper is organized as follows: 
the studied hybrid electric vehicle system is described in 
Section 2. The framework of the energy management 
system is introduced in Section 3. Section 4 introduces 
the two new E2E ratio decay functions. Section 5 
analyses the results of experimental evaluations. 
Conclusions are drawn in Section 6.  

2. THE HYBRID ELECTRIC POWERTRAIN SYSTEM 

The hybrid powertrain of the studied vehicle is 
illustrated in Fig.1. The traction motor is mainly powered 
by the battery pack as the primary power unit. The 
alternative power unit is consisted of an ICE and a 
generator (charging the battery pack) for normal vehicle 
operations. The key vehicle specifications are 
summarized in Table 1. 

 

Fig. 1 Power flow of the hybrid powertrain system 

Table I Vehicle parameter 

Parameter Description Value 

𝑚veh Vehicle mass 16t 
𝑟whl The radius of the wheels 0.75m 
𝑓𝑓 The friction coefficient 0.02 

𝜌air The density of the air 1.2258 
𝐶𝑑 Aerodynamic drag coefficient 0.8 
𝐴𝑓 Effective front area 6.8m2 

3. THE ENERGY MANAGEMENT SYSTEM 

The supervisory energy management system 
contains two interconnected layers [26], as shown in 

Fig.2. The two layers can be connected via local control 
network or the Internet of vehicles for different 
application scenarios. In the control layer, the energy 
management system continuously sends the engine 
control signal, 𝑢𝑒𝑔𝑢(𝑡)), to the alternative power unit and 

transmits the vehicle states (power demand, 𝑃𝑑(𝑡) and 
battery SoC, 𝑆𝑜𝐶(𝑡) ) and performance (energy loss, 
𝑃𝑙𝑜𝑠𝑠(𝑡)) to the learning layer. In the learning layer, the 
action selection policies module receives the vehicle 
information and runs action selection policy to optimize 
the control strategy. Then the control policy will be 
transferred to the control layer to enable the best energy 
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economy for the hybrid electric tractor driving in real-
world driving. 

 

Fig. 2 Framework of supervisory engine control 

3.1 States 

At each time interval 𝑡 , driver’s power demand, 
𝑃𝑑(𝑡), and battery state-of-charge, 𝑆𝑜𝐶(𝑡), are selected 
as the reinforcement learning ‘States’ for this research, 
as shown below: 

𝑆(𝑡) = [𝑃𝑑(𝑡), 𝑆𝑜𝐶(𝑡)]   (5) 

3.2 Action 

The outputs of the energy management system are 
the engine power demand, 𝑢𝑒𝑔𝑢(𝑡), and battery power 

demand, 𝑢𝑏𝑎𝑡𝑡(𝑡) . This paper uses the engine power 
demand as the action variable and it is determined by the 
control policy, 𝚷, by  

𝑎(𝑡) = 𝑢𝑒𝑔𝑢(𝑡) = 𝚷(𝑆(𝑡), 𝐐) ∈ [0,1]  (6) 

where, 𝐐 is the knowledge based that is developed by 
reinforcement learning algorithm. Once the power 
demand of engine is obtained, the power provided by BP, 
𝑃𝑏𝑎𝑡𝑡, can be calculated by 

𝑃𝑏𝑎𝑡𝑡(𝑡) =
𝑃𝑟−𝑢𝑎(𝑡)∙𝑃𝑎𝑚𝑎𝑥

𝑃𝑏𝑚𝑎𝑥

   (7) 

where, 𝑃𝑏𝑚𝑎𝑥
 = 365kw and  𝑃𝑎𝑚𝑎𝑥

 = 86.2 kW are the 

maximum power available of BP and engine generator 
unit, respectively; and 𝑃𝑟  is the power requirement for 
driving the vehicle move forward.  

3.3 Reward  

A merit function is used for evaluating the vehicle 
performance after taking selected control signal, which 
can be calculated by [19] 

𝑟(𝑡)

= {
           𝑟𝑖𝑛𝑖 − 𝑃𝑙𝑜𝑠𝑠(𝑡)                                  𝑆𝑜𝐶(𝑡) ≥ 𝑆𝑜𝐶𝑟𝑒𝑓

𝑟𝑖𝑛𝑖 − 𝑃𝑙𝑜𝑠𝑠(𝑡) − 𝜇|𝑆𝑜𝐶𝑝 − 𝑆𝑜𝐶(𝑡)|  𝑆𝑜𝐶(𝑡) < 𝑆𝑜𝐶𝑟𝑒𝑓

 

(8) 

where, a constraint factor 𝑆𝑜𝐶𝑝 =30% is needed to keep 

a longer battery usage ;  a scale factor 𝜇  balances the 
power efficiency and BP’s SoC level; 𝑃𝑙𝑜𝑠𝑠(𝑡)  is 
considered as a total power loss from the alternative 
power unit, it can be calculated by: 

𝑃𝑙𝑜𝑠𝑠(𝑡) =  𝐿𝑒𝑛𝑔(𝑡) + 𝐿𝑏𝑎𝑡𝑡(𝑡)  (9) 

𝐿𝑒𝑛𝑔(𝑡)  and 𝐿𝑏𝑎𝑡𝑡(𝑡) are the equivalent power loss of 

the diesel engine, and the power loss of the BP, 
respectively. They can be calculated by: 

𝐿𝑒𝑛𝑔(𝑡) = 𝑚𝑓(𝑡)̇ ∙ 𝐻𝑓 −
𝑇𝑒𝑛𝑔(𝑡)∙𝑛𝑒𝑛𝑔(𝑡)

9550

𝐿𝑏𝑎𝑡𝑡(𝑡) = 𝑅𝑙𝑜𝑠𝑠(𝑆𝑜𝐶) ∙ 𝐼𝑏𝑎𝑡𝑡(𝑡)2

} (10) 

where, 𝑚𝑓̇  is the fuel rate in real-time. 𝑇𝑒𝑛𝑔 and 𝑛𝑒𝑛𝑔 are 

torque and running speed of the diesel engine, 
respectively; 𝐼𝑏𝑎𝑡𝑡  is BP’s current; The equivalent 
internal battery resistant 𝑅𝑙𝑜𝑠𝑠  is a function of battery 
SoC; and diesel fuel heat value is 𝐻𝑓 = 44 × 106J/kg.  

4. EXPLORATION TO EXPOLITIATION RATIO 
DECAY FUNCTIONS 

Exploration of new control settings and exploitation 
of the existing control policy are two key procedures in 
reinforcement learning. Exploration and exploitation will 
generate different action signals for same vehicle state 
condition thus will obtain different rewards to building 
the knowledge base, 𝐐, as: 

𝐐(𝑺𝑡 , 𝑎𝑡) ← 𝐐(𝑺𝑡 , 𝑎𝑡) + α ∙ [𝑟𝑡 + γ ∙ max 𝐐(𝑺𝑡+1, : ) −
𝐐(𝑺𝑡 , 𝑎𝑡)]  (11) 

where αϵ[0,1] is the learning rate; and γ is a discount 
factor weighting the maximum estimated reward from 
the knowledge base, max 𝐐(𝑺𝑡+1, : ). 

In conventional Q learning algorithms, exploration 
and exploitation is control based on the comparation 
between a random number, 𝜀 , with the value of an 
explorational decay function, 𝜃 =  𝑏𝑘 ,where 𝑘  is the 
current learning iteration; If 𝜀 > 𝜃 the algorithm will do 
exploitation based on the current control policy, 
otherwise it will explore possible better control policy by 
randomly pick up an action value. To study the Q-
learning performance with different E2E ratio (E2ER), this 
paper introduces two new decay functions to generate 
different E2E trajectories for Q-learning based vehicle 
energy management control. 

4.1 Step-based decay policy 

The E2ER will be decreased as the people go down 
the stairs. This mechanics can lead to gain more 
opportunities to interact with the unknown 
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environment. The E2ER (𝜃) of Step-based policy can be 
calculated as below: 

𝜃 =  𝑓 × 𝑑𝑟𝑜𝑝
(

1+𝐿𝑅

𝐿𝑅𝑑𝑟𝑜𝑝
)
   (11) 

where, f is previous deciding factor value; and 𝑑𝑟𝑜𝑝 is a 
scale factor; 𝐿𝑅 is current learning iteration; and 𝐿𝑅𝑑𝑟𝑜𝑝 

controls the deciding factor dropping after how many 
learning iterations. Typically, E2ER will be dropped after 
10 learning iterations. 

4.2 Reciprocal function-based decay policy 

The E2ER of reciprocal function-based decay policy 
decreases as number of learning iterations increasing. 
The different from traditional exponential decay (EXD) is 
that the E2ER will drop faster than EXD. The E2ER (𝜃) of 
reciprocal-decay is described as follow:  

𝜃 =
𝑓

𝑆𝑓+𝑅𝑟𝑎𝑡𝑒∗𝐿𝑅
   (12) 

where, 𝑆𝑓 is a scale factor, usually equals to 1, 𝑅𝑟𝑎𝑡𝑒  is a 
decay rate which will decrease 𝜃  by the given fixed 
amount[27]. 

5. EXPERIMENTAL EVALUATIONS 

5.1 Testing driving cycle and platform 

Four predefined driving cycles are selected to 
evaluate the real-time performance of proposed policies, 
as shown in Fig.3. The proposed two action selection 
polices is firstly carried out in MATLAB/Simulink platform 
with initial battery state-of-charge of 50% under the 
predefined driving cycle one. And the results will be 
compared with traditional exponential decay (EXD) 
policy.  

 

Fig. 3 Power of the predefined driving cycle 

Next, the proposed policies will be implemented on the 
hardware-in-the-loop-test (HiL). A Desk LABCAR is used 
for HiL testing, as shown in Error! Reference source not 

found.Fig.4. The control prototype and the real-time 
vehicle model are compiled in a development PC, 
downloaded onto the DESL LABCAR through Ethernet. 
The result can be monitored through development 
computer. 

 

Fig. 4 Hardware-in-the-loop platform for real-time testing 

5.2 learning performance of Step-based decay policy 
and Reciprocal function-based decay policy 

The learning evaluation of step-based decay (SBD) 
policy, reciprocal function-based decay (RBD) policy and 
exponential decay (EXD) policy was demonstrated in 
Fig.5. And the variation 𝜃  of three policies during the 
learning process was shown in Fig.6. The EXD was set as 
a benchmark. The EXD tend to be more stable after the 
25th learning iterations and finally reached to 36.56%. 
The learning performance of the RBD was not stable and 
achieved 36.21% at 125th learning iteration. This because 
the deciding factor dropped rapidly, which did not leave 
enough time to the agent for understanding the 
unknown driving conditions. The SBD performed the best 
among three action selection policies reached to 36.82%. 
It still had huge probability to explore new vehicle engine 
control signals between the 20th and 60th of learning 
iterations to improve the vehicle energy efficiency. The 
SBD achieved the highest improvement rate of 6.21% 
(final vehicle energy efficiency compared with initial 
vehicle energy efficiency), which was higher than RBD 
with 1.36% and 0.33% than the EXD policy, respectively. 

 

Fig. 5 Learning performance of three model-free methods 
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Fig. 6 The variation curve of the deciding factor  

5.3 Real-time performance 

By deploying the two proposed policies in the 
hardware-in-loop testing system, the real-time 
performance was obtained and compared with the 
results from EXD through total vehicle energy loss, 
battery SoC and total battery energy loss as shown in Fig. 
1Fig.7. The LBD achieved a 1.52% lower total energy loss 
than the benchmark policy EXD. The SBD can save more 
energy among three methods, the main energy saving 
came from the battery total loss, the 11.62%, 12.63% 
lower than the RBD and the EXD policy, respectively.  

 

Fig. 7 Real-time performance of three model-free methods 

5.4 Robustness testing 

In actual driving situations, the hybrid electric 
vehicle energy management system will encounter 
various driving conditions. Therefore, a robustness test is 
required for step-based decay (SBD) and reciprocal 
function-based decay (RBD) policies. The traditional 
exponential decay (EXD) will be set as a benchmark. The 

results are given in Table II, including the initial battery 
state-of-charge (SoC)the battery SoC at the end of 
learning iteration (End battery SoC), the total energy 
usage (TEU) and the saving rate (savings). The adaptivity 
of SBD outperform than the RBD and the EXD in all 
predefined driving cycles (2-4). Compared to the EXD, the 
SBD can save at least 1.25% energy, and the highest 
saving rate was 2.04% in predefined cycle 2. 

Table II Performance of the CBD, FDB and LBD under predefined 
driving conditions  

  Driving 

    cycles 

Battery 

SoC 
Policy 

End battery 

SoC 
TEU (MJ) savings 

PRDC-2 

50% EXD 28.13% 239.22 - 

50% RBD 28.16% 240.23 -0.42% 

50% SBD 28.04% 234.42 2.04% 

PRDC-3 

50% EXD 28.13% 201.72 - 

50% RBD 28.16% 203.13 -0.69% 

50% SBD 28.02% 199.22 1.25% 

PRDC-4 

50% EXD 28.13% 543.52 - 

50% RBD 28.16% 546.64 -0.57% 

50% SBD 28.01% 536.21 1.36% 

6. CONCLUSIONS 

To study the influence of exploration-to-exploitation 
(E2E) ratio to the energy efficiency improvement for 
hybrid vehicles, this paper introduces two decay 
functions, ‘Reciprocal function-based decay’ (RBD) and 
‘Step-based decay’ (SBD), to generate E2E ratio 
trajectories for reinforcement learning algorithm that is 
conventionally based on exponential decay (EXD) 
function. Learning performance of two proposed policies 
were monitored from hybrid vehicle energy efficiency 
based on both software-in-the-loop (SiL) and hardware-
in-the-loop (HiL) platforms. The conclusions drawn from 
this work are as follows: 

• For vehicle optimization using reinforcement 
learning, the SBD function can achieve the highest 
vehicle energy efficiency improvement rate of 6.21% 
compared with RBD and EXD. 

• Reinforcement learning algorithm based on the SBD 
function can contribute to 11% energy saving rate 
from the battery system compared with RBD-based 
and EXD based systems in predefined driving cycle 
one.  

• The performance of the SBD-based system is robust. 
It can save more than 1.25% energy compared to the 
conventional system (EXD) in the predefined driving 
cycles, i.e., PRDC 2-4. 
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