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ABSTRACT 
 This study presents a vision-based deep learning 

approach for detecting and recognising occupant’ 
activities and window opening behaviour to help control 
the heating, ventilation, and air-conditioning (HVAC) 
system according to space's actual thermal and 
ventilation requirements. A convolutional neural 
network (CNN) model was developed, trained, and 
deployed to a camera for real-time detection. The results 
of an experimental test within the case study building 
indicated an overall detection accuracy of 92.72% for 
occupancy activities and 87.74% for window operations. 
Real-time detection and recognition provided the 
generation of the deep learning influenced profiles 
(DLIP) used as input for building energy simulation to 
evaluate the impact of the approach on energy demand 
and indoor air quality. The present work assesses the 
importance of the proposed approach for predicting 
indoor air quality and comfort while optimising building 
HVAC operations to provide an effective demand-
controlled ventilation strategy. 
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NOMENCLATURE 

Abbreviations  

ANN Artificial Neural Network 
BES Building Energy Simulation 
CNN Convolutional Neural Network 
DLIP Deep Learning Influenced Profiles 

HVAC 
Heating, Ventilation and Air-
Conditioning 

IAQ Indoor Air Quality 
ML Machine earning 

UK United Kingdom 

1. INTRODUCTION 
One of the highest energy demands comes from the 

building sector, about 40% globally [1]. HVAC is an 
important contributor to the total building energy 
demand [2] and, on average, accounts for over 50% of 
demand in the West [3]. Regardless, ventilation is an 
important component providing clean and fresh air 
inside indoor spaces. Good indoor air quality (IAQ) 
ensures the health and safety of occupants while 
providing a conducive environment for carrying out 
necessary tasks [4,5]. The recent pandemic has 
highlighted the importance of IAQ, to which the HVAC 
industry has responded with various innovations and 
guidelines, including its rational use [6]. This can help 
prevent the spread of pathogens while also ensuring 
judicious energy usage. 

Apart from pathogens, indoor pollutants include 
various oxides of Carbon, Sulphur, Nitrogen etc., and 
chemicals like radon, VOCs, ozone, toluene etc. While 
sources are quite diverse, ranging from stoves, 
cigarettes, office equipment, cleaning activities, etc. 
Even outdoor pollutants contribute to indoor IAQ [7]. An 
effective ventilation system ensures that their 
concentration remains below the recommended level. In 
recent years various sensors have emerged to monitor 
the pollutant level in indoor space [8]. Monitoring can 
help determine the source and strength of the pollutant, 
and the data can be fed into the HVAC system to take 
necessary action. Some models, including machine 
learning algorithms, have also been developed to 
forecast IAQ based on meteorological parameters and 
indoor measurements [9]. Such preventive models may 
further create an effective means to provide a 
comfortable indoor environment. 
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With the development of data mining methods, 
especially the recent growth in deep learning neural 
networks, advanced control and management of HVAC 
systems can be achieved. The emergence of data-mining 
methods contributes to three main control strategies for 
HVAC systems: (1) building energy load prediction 
[10,11]; (2) HVAC system operation pattern recognition 
[12,13]; (3) fault detection and diagnosis [14,15]. Within 
the scope of building energy load prediction for this 
study, a great number of previous studies focus on the 
estimations of cooling/heating load and electricity load 
to achieve an optimal and timely response of HVAC 
control for the load variations. Paudel et al. [16] 
proposed methods for predicting heating load using a 
support vector machine (SVM) for low energy buildings 
where the heat transfer between the internal spaces of 
these buildings and the ambient environment is slow. 
Besides, Fan, Ding and Liao [17] evaluated and compared 
five data-mining models for forecasting cooling load for 
a case study library and found that multiple nonlinear 
regression models indicated the best forecast accuracy 
and less training data requirements and computational 
power with the other four models. In addition, Amber et 
al. [18] tested and compared five building electricity 
consumption forecast models and indicated that artificial 
neural network (ANN) demonstrated the lowest mean 
absolute percentage error in predicting electricity 
consumption for a case study office building. 

The initial approaches introduced by [19,20] 
consisted of a framework approach that utilises vision-
based deep learning techniques to provide a real-time 
understanding of occupancy behaviour within a building 
space allows effective building and HVAC system controls 
designed to enhance building energy performances.  
However, the recent pandemic suggests the importance 
of the achievement of good indoor air conditions. 

2. METHOD 

 
Fig 1 Overview of the framework approach. 

This present study builds upon the framework design 
by developing the approach to improve indoor air quality 
within indoor building spaces (Figure 1). Similarly, the 
method consists of 2 parts. Part 1 focuses on developing 
and implementing the proposed deep learning 
framework, while Part 2 uses a series of different 
building energy simulation (BES) cases to analyse the 
whole framework approach under common scenario-
based situations.  

2.1 Deep Learning Method 

To form the vision-based detector, an image-based 
training and testing dataset were established. It 
consisted of images of common occupancy behaviour 
within an indoor office and lecture spaces, including 
sitting, standing, and walking. With window opening as 
the most common natural ventilation strategy used in 
places with temperate climates such as the United 
Kingdom, to enable the detector to assist towards the 
conditions of indoor air quality, images of opened 
windows were also gathered. All images were pre-
processed by using the software, LabelImg to highlight 
each image's specific region of interest. For most cases 
(such as the images shown in Figure 2), multiple labels 
were assigned by highlighting a bounding box around 
each occupant, and on each of the gaps of the windows 
across all sides. 

 
Fig 2 Example images gathered from Google Images to form 
the image datasets, along with the examples of how images 

were manually labelled to highlight the specific region of 
interest. 
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A model from the TensorFlow detection zoo was 
selected and applied to allow real-time detection and 
recognition. This assisted the pipeline configuration of 
the model used to train the desired detector. The 
TensorFlow Detection Model Zoo consisted of a 
collection of detection models pre-trained on various 
common image-based datasets. The COCO-trained 
model of Faster R-CNN (With Inception V2) was selected. 
Two models were configured and trained separately, 
with one model for occupancy activity detection and the 
second for window detection. Once both models were 
successfully trained, they were combined and deployed 
in a single AI-powered camera, and a validation of the 
trained models was performed using a set of still images 
located from the testing dataset.  

2.2 Application of the Deep Learning Method 

 
Fig 3 Setup and timeline of the 4-day test scenario within the 

selected lecture room during a typical week.   

To assess the effectiveness of the framework 
approach that could potentially be applied to buildings, 
scenario-based building energy simulation cases with 
different operational profiles for heating, cooling, 
ventilation, occupancy, and windows were simulated to 
provide results in terms of internal heat gains, ventilation 

losses, energy demands and thermal comfort. A 4-day 
test scenario representing days during a typical weekday 
and weekend within a lecture room located on the first 
floor of the Marmont Centre at the University of 
Nottingham (University Park Campus, Nottingham, UK) 
was used to support the testing of the proposed deep 
learning vision-based approach (Figure 3). The building 
was assumed to be naturally ventilated and is integrated 
with a central heating system. The selected room has a 
floor area of 96.9m2 with dimensions of 12.75m x 7.6m 
and a floor to ceiling height of 2.5m. Furthermore, 
Nottingham, UK weather data file was used for the 
simulation. The infiltration rate value was assumed 
constant for the air exchanges with 0.5 air changes per 
hour. The windows were assumed to have a top hung 
window opening with an openable area of 50% and a 
maximum openable angle of 45°. 

Three scenario-based cases were created (Figure 4). 
The first case represented the conditions where the 
building and HVAC systems operated based on 
predefined or fixed schedules. It includes set heating and 
cooling profiles to maintain an indoor temperature of 
21°C during occupied hours, the assumption of static 
occupancy profiles where occupants were assumed to be 
constantly sitting (performing average sedentary 
activities, represented as Typical Occupancy 1) or to be 
constantly walking (performing high emission activities, 
represented as Typical Occupancy 2) during building 
operational hours, along with window profiles of either 
constantly opened or closed. 

The second and third cases represented when both 
occupant’s activities and window conditions were 
detected and recognised using the integrated vision-
based approach. The detection of occupancy activities 
aided the adjustments of the operations of the building 
HVAC. The heating setpoint temperature of 21°C was 
only set when occupants were detected in the lecture 
room. While the windows were detected as opened at 
around 15:00 on Day 1, the system response allowed the 
building users to be informed about the window 
condition. The second case represented the situation 
where the ‘inform occupancy’ response was operated 
and the building manager was informed, so the windows 
were closed at 17:00 (1 hour after the end of the lecture). 
However, the third case represented the situation where 
the building users or manager did not respond to the 
notification made, and the building HVAC controls made 
a direct response by switching off the heating system 
when no people and opened windows were detected. 
Furthermore, since this is a real-time based approach, 
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continuous operation of the framework would further 
suggest the adjustment of the HVAC operation and 
informing building users about window conditions to 
define the number of windows that should be opened 
would be dependent upon the number of occupants 
within the room, and the indoor room temperature.   

 
Fig 4 Description of the different simulation cases based on 

the different system responses. 

3. RESULTS AND DISCUSSION 

 
Fig 5 An example generated Deep Learning Influenced  

Profiles (DLIP) for a). occupancy and b). windows during an 
experimental test conducted within the selected case study 

building. 

The trained models were validated using a set of still 
images located from the testing dataset. An average 
accuracy of 94.04% for sitting, 91.43% for standing, 
92.70% for walking and 87.74% for opened windows was 
achieved. This suggests that the models have been 
effectively trained and can be used for real-time 
detection. It should be noted that during the real-time 
detections, images of the detection are not stored. 
Instead, deep learning influenced profiles (DLIP) which 
consists of the data about the number of occupants 

performing each of the selected activities and the 
number of opened windows, were recorded for the 
assistance of response based on informing occupancy 
and the operations of the HVAC system controls. Figure 
5 presents an example of a formed DLIP for occupancy 
activity (Figure 5a) and windows (Figure 5b). The results 
show that error still occurs with times of incorrect or 
missed detection, leading to inaccurate predictions 
made. However, this will be improved in future works.  

Since this is a vision-based approach that requires a 
camera to perform the following detections, limitations 
in terms of obstruction can ultimately affect the 
performance of such an approach. Furthermore, other 
factors including the room, indoor lighting levels (very 
low or very high lighting intensities) and at times when 
lots of glare through windows would have a significant 
effect upon the performance of such approach. It can 
result in inaccurate detection of occupants and their 
actions towards the window conditions to not be 
identified. Hence, optimisation of the deep learning 
model to adapt with the ability to perform extensive 
detection under more infrequent conditions was 
proposed to further enhance the desired approach. 

Figure 6a presents the distribution of heat gains 
across the simulated period in terms of the use of Typical 
Occupancy Profiles 1 and 2. It provided benchmark 
values to represent static occupancy profiles employed 
within conventional systems in buildings. As shown, this 
was compared with an example DLIP generated through 
the application of the vision-based deep learning 
approach. The lecture room was unoccupied for most of 
the time, and only a small number of occupants were 
present for a few hours, which resulted in a predicted 
occupancy gain of 16.6kWh. This suggests that if the 
HVAC was operated based on the assumption 
corresponding to these typical profiles, it could 
significantly overestimate the indoor heat gains. 
Therefore, this indicates the importance of such an 
approach to recognise whether a room is occupied or 
unoccupied, along with the knowledge of the type of 
activities performed by occupants at a given time. 

Based on the scenario cases, the amount of 
ventilation heat losses achieved was influenced by the 
indoor-outdoor conditions and the number of opened 
windows. The results shown in Figure 6b were directly 
influenced by the window profiles generated from the 
detections made due to occupancy behaviour. Hence, 
this indicates the importance of knowing whether 
windows are either opened or closed, as it can 
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significantly affect the ventilation conditions and the air 
quality within an indoor environment.  

 
Fig 6 Comparison of the building energy performance results 
in terms of (a) occupancy heat gains (b) ventilation heat loss 

and (c) room CO2 concentration across time during the 
different scenario cases.  

The indoor air quality can be assessed in terms of the 
room CO2 concentration levels. Generally, CO2 levels in 
rooms that are below 1,000ppm were assumed to be 
fairly adequate, and anything above this level would 
indicate the room is highly polluted. This can affect 
occupancy productivity and increased result of the 
danger to human health. Figure 6c presents a 
comparison of the distribution of the CO2 concentration 
for the three selected cases. Although a lower ventilation 
heat loss was achieved for Case 2 during the lecture 
period in Day 4, it also led to very high CO2 
concentrations levels peaking at 2,288ppm when the 
occupants did not open the windows. In Case 3, both the 
number of occupants and windows open were 
considered in the decision-making process of the control 
system. It assumed that 2 windows were opened during 
the lecture period as per the recommendation by the 
system. This resulted in the CO2 concentration reducing 
from 2,288ppm to approximately 1,000ppm. Although 

the air quality is still not optimal, it can be further 
improved by enabling the system to suggest occupants 
for the room to be more naturally ventilated by having 
more windows opened or to increase the fresh air rates 
further, if mechanically ventilated. 

4. CONCLUSION AND FUTURE WORKS 
This present study proposes a data-driven deep 

learning framework for detecting and recognising 
occupancy activity and windows. The data generated can 
be used to make real-time adjustments to the HVAC 
system operations and provide notifications to building 
users and managers to minimise unnecessary energy 
usage and effectively manage the indoor air quality. A 
Faster R-CNN model was developed and trained using an 
image-based dataset to enable the detection and 
recognition of occupancy behaviour. The models were 
integrated and deployed to an AI-based camera. During 
the detection, real-time data about the number of 
occupants performing each of the selected activities and 
windows open were generated and used to form the 
deep learning influenced profile (DLIP). 

Building energy simulation was performed with 
various scenario-based cases to assess the deep learning 
approach and provide insights into how the proposed 
detection method can enable HVAC systems to adapt 
and respond to occupancy's dynamic changes. The case 
study building was modelled, and 3 different scenario-
based cases were considered. The cases focused on the 
application of different response-based solutions. 
Results indicate that the deep learning approach can 
reduce the under or overestimation of occupancy and 
proposes a demand-controlled ventilation strategy that 
enables the adjustment of the fresh-air intake based on 
the understanding of occupancy within a building space.  

Incorporating the proposed framework with existing 
building sensors would enable better prediction of the 
heat gains, ventilation demands and indoor air quality. 
Future work includes using other numerical-based 
techniques to verify the proposed approach and provide 
further assessments of the CO2 level distribution within 
the building spaces. The location of the occupants, 
supply air diffusers and windows can influence not only 
the energy and ventilation performance but also the CO2 

concentration, which may vary within an occupied space. 
Hence, it is necessary to develop an approach that can 
predict the real-time spatial distribution of CO2 in a room 
while the occupancy patterns; natural and mechanical 
ventilation strategies continuously vary throughout the 
occupancy period. The information will help the control 
strategy decide and adjust the ventilation level in each 
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zone or alert the occupants to adjust specific openings 
manually. The performance of the proposed approach 
will be compared with existing solutions such as CO2 

sensors. 
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