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ABSTRACT 
 This paper investigates a collective control problem 

for a parking-based large-scaled EVs. A parking under 
electric energy management by a virtual power plant is 
targeted under assumption of decentralized 
charging/discharging rate control of the individual EVs. A 
decentralized charging control strategy is proposed by 
solving a mean-field game problem with the cost 
function that balancing between the collective charging 
behavior and the charging level of each EV. Simulation 
results is finally demonstrated to validate the proposed 
control strategy. 
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strategy; Mean-field game. 
 

NONMENCLATURE 

Abbreviations  

EV 
SoC 
MFG 
VPP 

Electric vehicle 
State-of-charge 
Mean-field game 
Virtual power plant 

Symbols  

N 
t 

Number of EVs  
Time 

 

1. INTRODUCTION 
Motivated by the global trend of the electrification 

of vehicle powertrain, electric vehicles (EV) became a big 
load for electric power grid that is difficult to manage the 
global behavior, since as a mobility tool, the EVs is 
managed individually with uncertainty and stochasticity 

for satisfying mobility demand of human life. How to 
manage the uncertain load caused by a large-scaled, but 
scattered EVs is a challenging issue for the power grid 
operation. A feasible way is the idea of virtual power 
plant (VPP) which is recently focused attention due to 
friability in economic operation for a massive, distributed 
energy resources [1]. However, VPP is planning the 
trading schedule based on a horizon ahead prediction, 
for example a few hours or half-day, for buying and 
selling the electric energy. This means that the 
charging/discharging behavior of the EV cloud have to 
match the planning for guarantee of stable operation of 
the whole energy systems. Therefore, a new challenging 
issue debated to EV users is how to achieve a collective 
charging behavior by distributed control of individual EV. 

In the last decade, distributed control of EVs has 
been spotlighted by both of research fields of power 
system and vehicle power engineering. Most attention 
has been focused on corporative control between the 
power grid operation and EV charging [2,3]. From the 
view of developing charging control strategy, model 
predictive approaches have been investigated which 
taken the stochasticity and the uncertainty in mobility 
demand into account [4]. Indeed, impact of thousand-
level EV cloud is considered in the network-constrained 
economic dispatch problem [5]. Several approaches have 
been proposed to provide a solution of distributed 
charging control problem for a large-scaled EVs. A 
comprehensive survey on the distributed charging 
control algorithm is very recently published in [6] where 
the formulation of optimization problem is classified 
from the view of operational and cost aspects of grid 
operation, EV users, and aggregators, respectively. 
Under the configuration of electric energy system 
mentioned above, essential feature of distributed 
charging strategy is that a collective charging/discharging 
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behavior of a large-scaled EVs must be implemented to 
match the power supply panning by VPP without 
requirement of sharing the state-of-charge (SoC) of each 
vehicle and communicated the control strategy each 
other in the EV cloud. The charging decision should be 
made based on the local information.  

Meanwhile, the mean-field game (MFG) theory is 
initially proposed by [7] and [8] which provides a new 
theoretical tool to describe the mean-field behavior of a 
large population of agents with dynamics. This 
innovative theoretical tool enables us to develop a 
model-based distributed control algorithm to achieve a 
desired collective behavior with feedback of local 
information only. Indeed, there have been a few trials to 
apply the MFG theory in charging control of large-scaled 
EVs. For example, [9] develops the collective target 
tracking mean-field control for fleets of plug-in EVs. [10] 
proposes a decentralized competitive charging 
coordination algorithm for a large population of plug-in 
EVs. A day-ahead mobility-based power trade planning 
and real-time MFG-based charging control scheme has 
been studied in [11].  

This paper addresses a parking-based collective 
charging/discharging control problem by using MFG 
theory. Under assumption that a horizon-based loo-
ahead planning is given by VPP, we focus our attention 
to develop a decentralized MFG-type charging control 
strategy by considering the impact of EV charging in the 
sense of mean-field behavior. The cost function for 
optimization is motivated from [12], however, the 
proposed solution is obtained from the model of the SoC 
distribution. This new idea enables us to obtain the 
decentralized control law by policy iteration algorithm. 
The developed control strategy is validated based on a 
numerical simulation. 

   

2. MODEL AND PROBLEM FORMULATION 
2.1. Background 

Consider the residential areas, where a large-scaled 
EVs denoted by the finite set 𝒜𝒜 = {1,⋯ ,𝑁𝑁} are parking 
in the charging station and being charged as shown in Fig. 
1. The charging station is electrically connected to the 
main grid with ability of supply electric power to the 
charged EVs. It is assumed that all the EVs share the same 
dynamical model of charging behavior of SOC and the 
numbers of the EVs 𝑁𝑁 is very large. 

Next, the modeling of these vehicles is introduced 
firstly and then the problem formulation is given. 
2.2. Modeling 

In the following, we introduce the model for EVs 

charging model that will be employed throughout the 
paper. The charging rate of vehicle 𝑖𝑖  is denoted by 
𝑢𝑢𝑖𝑖(𝑡𝑡).  The amount of electric energy stored in the 
battery of vehicle 𝑖𝑖  at time 𝑡𝑡  is denoted by 𝑥𝑥𝑖𝑖(𝑡𝑡) ∈
[0,1], quantified in energy units. In this way, 𝑥𝑥𝑖𝑖(𝑡𝑡) = 0 
means the battery is empty, 𝑥𝑥𝑖𝑖(𝑡𝑡) = 1  means the 
battery is fully charged. 

In this paper, it is assumed that all the dynamic of 
each vehicle’ s SoC is identical, which is described as the 
following stochastic differential equations: 

𝑑𝑑𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑢𝑢𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎(𝑡𝑡)𝑑𝑑𝑤𝑤𝑖𝑖(𝑡𝑡),     1 ≤ 𝑖𝑖 ≤ 𝑁𝑁,      (1) 
where 𝑤𝑤𝑖𝑖 (𝑡𝑡)  is the standard independent Brownian 
motion which represents the instability of the charging 
process and the modeling error. 𝜎𝜎 > 0 is a given weight 
factor that determines how much the volatility affect the 
determinate dynamics. 

We assume the agent 𝑖𝑖’s initial SoC 𝑥𝑥𝑖𝑖(0), 1 ≤ 𝑖𝑖 ≤
𝑁𝑁 is random, distributed according to some known 
probability density function (pdf) 𝜉𝜉0 . In addition, we 
denote the population average SoC by 

 �̅�𝑥(𝑡𝑡) = 𝑙𝑙𝑖𝑖𝑙𝑙
𝑁𝑁→+∞

∑ 𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑁𝑁
𝑖𝑖=1 . 

2.3. Problem formulation 
This paper focuses on the optimal charging 

coordination for large-scale electric vehicles (EVs) in the 
charging station with balance of following three parts: (1) 
Average SoC of the collective EVs gradually filled up to a 
satisfactory level. (2) To achieve the SoC consensus at the 
average SoC, in other words, every SoC of EVs is not far 
away from the average SoC. (3) To minimize the electric 
energy consumption under the satisfaction of the object 
of (1) and (2). To the end, the SoCs of the large-scale 
vehicles should reach consensus at the given desired 
value. 

Thus, we use a more formal mathematics expression 
to describe the above three requirement parts: 
Each vehicle 𝑖𝑖  is aimed to determine the charging rate 

  
 

 
Fig 1 Concept of the parking-based EV collective charging 
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𝑢𝑢𝑖𝑖(𝑡𝑡) that minimize its own total cost 𝐽𝐽𝑖𝑖. That is,  

𝐽𝐽𝑖𝑖(𝑢𝑢𝑖𝑖 ,𝑢𝑢−𝑖𝑖) = 𝐸𝐸� 𝑒𝑒−𝜌𝜌𝑡𝑡[𝑞𝑞𝑡𝑡2(𝑥𝑥𝑖𝑖(𝑡𝑡) − 𝑧𝑧)2 + 𝑢𝑢𝑖𝑖(𝑡𝑡)2]𝑑𝑑
∞

0
𝑡𝑡 

where 𝑢𝑢−𝑖𝑖  denotes the charging inputs of the 
complementary set of EVs i.e.  𝑢𝑢−𝑖𝑖 = �𝑢𝑢𝑗𝑗 ,  𝑗𝑗 ≠ 𝑖𝑖,  1 ≤
𝑗𝑗 ≤ 𝑁𝑁�. The value of 𝑧𝑧 is a direction assigned to each EV 
in the population and each EV’s deviation from this 
direction is penalized by the deviation penalty coefficient 
𝑞𝑞𝑡𝑡 . Integral controller embedded in mean-target 
deviation coefficient 𝑞𝑞𝑡𝑡  is calculated as the following 
integrated error signal: 

𝑞𝑞𝑡𝑡 = � (�̅�𝑥(𝑠𝑠) − 𝑦𝑦)𝑑𝑑𝑠𝑠
𝑡𝑡

0
+ 𝐾𝐾,                                      (2) 

where 𝐾𝐾 is positive weight factors and 𝑦𝑦 is the mean 
target.  

The justification for the above cost function is that by 
pointing individual EV’s SoC towards what is considered 
as the maximum value 𝑧𝑧, it dictates a global increase in 
their individual SoCs. This pressure for increase persists 
as long as the differential between the mean SoC and the 
mean target 𝑦𝑦 is high. The role of the integral controller 
is to automatically compute the right level of penalty 
coefficient 𝑞𝑞𝑡𝑡  which, in the steady state, should 
maintain the mean population SoC at 𝑦𝑦. Since 𝑥𝑥𝑖𝑖(𝑡𝑡) = 1 
means the individual EV’s battery  is fully charged, we 
usually set the value of 𝑧𝑧 to 1. 

3. PROPOSED APPROACH 
In this section, to solve the problem formulated 

above, we expand the system to a three-dimension 
augmented system, then the policy iteration algorithm 
is employed to derive the decentralized charging 
control law for individual EV. 
3.1. Augmented system 

Taking the average of both sides of equation (1) and 
let 𝑁𝑁 → +∞, we have: 

�
𝑑𝑑�̅�𝑥
𝑑𝑑𝑡𝑡

= 𝑢𝑢�(𝑡𝑡)

�̅�𝑥(0) = 𝑥𝑥0���
                                                            (3) 

Also, we can write the dynamic of 𝑞𝑞𝑡𝑡 from equation 
(2) 

�
𝑑𝑑𝑞𝑞𝑡𝑡
𝑑𝑑𝑡𝑡

= 𝜆𝜆(�̅�𝑥(𝑡𝑡) − 𝑦𝑦)

𝑞𝑞𝑡𝑡(0) = 𝐾𝐾
                                             (4) 

By putting the dynamics of 𝑥𝑥𝑖𝑖 , �̅�𝑥 and 𝑞𝑞𝑡𝑡  together,  
the augmented system state 𝑋𝑋𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑙𝑙(𝑥𝑥𝑖𝑖 , �̅�𝑥, 𝑞𝑞𝑡𝑡).  In this 
way, the augmented system can be described as 
follows: 

𝑑𝑑𝑋𝑋𝑖𝑖 = [𝐴𝐴(𝑡𝑡,𝑋𝑋𝑖𝑖) + 𝐵𝐵(𝑡𝑡,𝑋𝑋𝑖𝑖)𝑢𝑢𝑖𝑖]𝑑𝑑𝑡𝑡 + 𝐶𝐶𝑑𝑑𝑤𝑤𝑖𝑖  
where  

𝐴𝐴(𝑡𝑡,𝑋𝑋𝑖𝑖) = �
0

𝑢𝑢�(𝑡𝑡)
𝑥𝑥�(𝑡𝑡) − 𝑦𝑦

�, 𝐵𝐵(𝑡𝑡,𝑋𝑋𝑖𝑖) = �
1
0
0
�, 𝐶𝐶(𝑡𝑡,𝑋𝑋𝑖𝑖) = �

𝜎𝜎(𝑡𝑡)
0
0
�. 

We suppose that the controller of each EV is a liner 
state feedback control law and has a uniform form, 
assume the optimal control law is 

𝑢𝑢𝑖𝑖 = η(𝑡𝑡, 𝑥𝑥𝑖𝑖 , �̅�𝑥), 
then by using the linear property of the control input, 
we have 

𝑢𝑢� =
1
𝑁𝑁
�η(𝑡𝑡, 𝑥𝑥𝑖𝑖 , �̅�𝑥)
𝑁𝑁

𝑖𝑖=1

= η�𝑡𝑡,
1
𝑁𝑁
�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

, �̅�𝑥� = η(𝑡𝑡, �̅�𝑥, �̅�𝑥). 

According to Bellman’s principle of optimality, the 
Hamilton–Jacobi–Bellman (HJB) equation is 

ρ𝑉𝑉𝑖𝑖(𝑡𝑡,𝑋𝑋𝑖𝑖) = min
𝑢𝑢

{𝑞𝑞𝑡𝑡2(𝑥𝑥𝑖𝑖(𝑡𝑡) − 𝑧𝑧)2 + 𝑢𝑢𝑖𝑖(𝑡𝑡)2 +
∂𝑉𝑉𝑖𝑖
∂𝑡𝑡

+ 

�
𝜕𝜕𝑉𝑉𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

�
𝑇𝑇

[𝐴𝐴(𝑡𝑡,𝑋𝑋𝑖𝑖) + 𝐵𝐵(𝑡𝑡,𝑋𝑋𝑖𝑖)𝑢𝑢𝑖𝑖(𝑡𝑡)]} +
1
2

Tr�𝐶𝐶𝑇𝑇
∂2𝑉𝑉𝑖𝑖
∂𝑋𝑋𝑖𝑖2

𝐶𝐶�. 

Thus, the optimal control can be represented by 

𝑢𝑢𝑖𝑖∗ = −
𝐵𝐵(𝑡𝑡,𝑋𝑋𝑖𝑖)

2
∂𝑉𝑉𝑖𝑖
∂𝑋𝑋𝑖𝑖

. 

Throughout this paper, we assume that the value 
function 𝑉𝑉𝑖𝑖(𝑢𝑢𝑖𝑖 , 𝑥𝑥𝑖𝑖) has the following quadratic form 
𝑉𝑉𝑖𝑖(𝑡𝑡,𝑋𝑋𝑖𝑖) = 𝑝𝑝(𝑡𝑡, �̅�𝑥, 𝑞𝑞𝑡𝑡)𝑥𝑥𝑖𝑖2 + 𝑠𝑠(𝑡𝑡, �̅�𝑥, 𝑞𝑞𝑡𝑡)𝑥𝑥𝑖𝑖 + 𝑙𝑙(𝑡𝑡, �̅�𝑥, 𝑞𝑞𝑡𝑡). 

Substituting above  𝑉𝑉𝑖𝑖(𝑡𝑡,𝑋𝑋𝑖𝑖) into HJB equation, then 
grouping the terms multiplied by 𝑥𝑥𝑖𝑖2  and 𝑥𝑥𝑖𝑖  we have 
the following three equations: 
∂𝑝𝑝
∂𝑡𝑡 + 𝑞𝑞𝑡𝑡2 + 𝑝𝑝 − 2𝑝𝑝2 − �𝑝𝑝�̅�𝑥 +

𝑠𝑠
2�
∂𝑝𝑝
∂�̅�𝑥 + (�̅�𝑥 − 𝑦𝑦)

∂𝑝𝑝
∂𝑞𝑞𝑡𝑡

− ρ𝑝𝑝 = 0    (5) 

∂𝑠𝑠
∂𝑡𝑡
− 2𝑧𝑧𝑞𝑞𝑡𝑡2 − 𝑝𝑝𝑠𝑠 − �𝑝𝑝�̅�𝑥 +

𝑠𝑠
2�

∂𝑠𝑠
∂�̅�𝑥

+ (�̅�𝑥 − 𝑦𝑦)
∂𝑠𝑠
∂𝑞𝑞𝑡𝑡

− ρ𝑠𝑠 = 0  (6)  

∂m
∂t

+ 𝑞𝑞𝑡𝑡2𝑧𝑧2 −
 𝑠𝑠 2

4
− �𝑝𝑝�̅�𝑥 +

𝑠𝑠
2�
∂𝑙𝑙
∂�̅�𝑥

+ (�̅�𝑥 − 𝑦𝑦)
∂𝑙𝑙
∂𝑞𝑞𝑡𝑡

+ 2𝑝𝑝σ2

− ρ𝑙𝑙 = 0                                                     (7) 
3.2. Policy iteration algorithm 
  Since it is difficult to analytically obtain the optimal 
solution satisfying the optimal conditions in (5), (6) and 
(7), the policy iteration method is employed to deal with 
the problem. Here, the main task is to arbitrarily give an 
initial control policy and set the convergence criterion 𝜉𝜉, 
then the optimal control inputs can be updated through 
following policy iteration algorithm showing in Fig 2. step 
by step. After a finite number of policies, |𝑢𝑢𝑖𝑖

(𝑗𝑗) −
𝑢𝑢𝑖𝑖

(𝑗𝑗−1)| <  𝜉𝜉,  that means this process must converge to 
an optimal policy, in other words, the algorithm has 
found the optimal control. It is obvious that optimal 
charging control satisfying the optimal conditions.  

https://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi%E2%80%93Bellman_equation
https://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi%E2%80%93Bellman_equation
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Fig 2 Flowchart of the proposed numerical method 

 
It is shown that the optimal charging power is only 

dependent on the individual state variable SoC. Thus, the 
proposed real-time MFG-based optimal charging control 
for large-scale EVs is decentralized. 

4. SIMULATION RESULTS  
 
In this section, the simulation validations of 

collective control problem for a parking-based large-
scaled EVs are conducted to show the effectiveness of 
the above proposed approach. 

For our simulation experiments we simulate a 
population of 1000 EVs. We consider a uniform 
population of vehicles adopt the charging model as given 
in equation (1). The initial SOCs of the EVs are drawn 
from a Uniform distribution 𝑈𝑈(0.1, 0.4). That means the 
initial average SOC �̅�𝑥(0) = 0.25.  The basic physical 
parameters used in the simulation are listed in Table. 1. 

Table. 1. 
Parameters Value 

K 1.5 
       ρ  0.01 
      σ(𝑡𝑡)  0.01 
      𝑥𝑥𝑖𝑖(0)  
   z 
   y 

𝑈𝑈(0.1, 0.4)  
1 
0.7 

 
 
 
 

 
 

 
Fig 3 The evolution of SoCs and �̅�𝑥 

 
 

 
Fig 4 The evolution of charging rates and 𝑢𝑢�  

 
 

 
Fig 5 The evolution of mean SoC 
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Fig. 3 shows the trajectories of vehicles’ SoC and the 
thick orange line is the average of SoC, Which are 
generated by the augmented system and policy iteration 
approach proposed in Section 4. It can be seen that the 
average of SoC of the collective EVs is gradually filled up 
and finally stabilized at the satisfactory level 0.7 within 7 
hours. Individual EV’s SoC consensus at the average SoC. 

Fig. 4 shows the evolution of charging rates and the 
thick orange line is the average charging rate. It shown 
that the charging power is decreasing, and finally 
become zero when the average of SoC reach the 
satisfactory level. 

Fig. 5 shows the evolution of mean SoC, it clearly 
shows average of SoC from low level 0.25 gradually filled 
to the preset value.   

 
Fig 6 The evolution of probability densities of SoCs 

 
Fig. 6 shows the evolution of probability densities of 

SoCs from the beginning to the end. It can be seen that 
the curve of probability density function getting 
narrower and narrower over time. That also means 
individual EV’s SoC consensus at the average SoC, every 
SoC of EVs g gets closer and closer from the average SoC. 
All the Figs we show here demonstrate the proposed 
decentralized optimal charging strategy for parking-
based large-scale EVs is effective for the three goals 
which formulated in Section 2. 

5. CONCLUSION  
This paper focuses on the collective control problem 

for a parking-based large-scaled EVs. Under mean-field 
game theory, the problem model that balancing 
between the collective charging behavior and the 
charging level of each EV is established. Next, a three-
dimension augmented system and the policy iteration 
algorithm is employed to derive the decentralized 
charging control law for individual EV. A simulation 
validation is employed to examine the effective of the 
charging strategy we designed. 
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