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ABSTRACT 
 This study analyzes the impact of urban 

compactness on carbon emissions. The essay proposes 
three broad dimensions to evaluate compactness: urban 
form, spatial structure and infrastructure efficiency. The 
impact of compactness on carbon emissions is then 
analyzed by a panel model using data from 2002 to 2018 
on 49 high-tier Chinese cities. The results suggest that of 
all compact variables, only mixed land use tends to be 
associated with less carbon emissions. In addition, higher 
ranking cities emit more carbon than lower ranking 
cities. 
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1. INTRODUCTION 
Is compact city a more sustainable and efficient 

urban development paradigm? This paper attempts to 
provide some insight by not only establishing linkages 
between compactness and sustainability in a cross 
section of 49 high-tier Chinese cities, but also a forward 
looking approach to “what can be done” given the 
complexity of different city backgrounds. 

Since China’s rapid urbanization in 1990s and the 
encroachment on the surrounding agricultural land, the 
rising urban built-up area has been leading to the 
increase of urban traffic congestion (Li, Xiong & Wang, 
2019), domestic energy consumption (Ma & Jin, 2011), 
environmental challenges, public service costs and 
wealth inequities (Stoel, 1999). As one of the various 
approaches in response to these problems, the concept 

of “compact city” initially proposed within European and 
American contexts in order to save urban energy and 
resource consumption, has been increasingly become 
one of the reference strategies of Chinese city 
development (Ma & Jin, 2011). The construction of 
Shenzhen Guangming new district is just one of the 
paradigms of compact city concept in mainland China(Lv 
& lei, 2008). The Yujiapu Financial District, Xiangluowan 
Business District and TEDA MSD (Morden Service 
District) in Tianjin city also employed compact city theory 
for reference in its urban planning and design (Wang et 
al., 2013).  

With the rising application of compact city in China, 
there is a burgeoning literature, in which scholars, 
academics and government professionals have discussed 
the significance of compact city development (Lv & lei, 
2008). But the results vary from each other. This paper 
gives the evaluation indicators of urban compactness in 
China. A panel model is built using data from 2002 to 
2018 to examine the influential determinants for 
reducing carbon emissions. On this basis, the feasibility 
of compact city development in China and research 
limitations are discussed at the end, providing scientific 
thinking for promoting sustainable development in high-
tier Chinese cities. 

2. DATA AND METHODS 

2.1 Data sets and variables 
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Dummy variables: China is enormous and diverse, 
and may be segmented geographically, culturally, and 
socio-economically. The heterogeneity that could 
potentially exist in the impacts needs to be explored. 
Unlike previous research dividing China into western, 
eastern, central regions (eg., Liu et al., 2020; Yi et al., 
2017; Li et al., 2019b), this paper has chosen to segment 
China according to administrative units: tiers of cities 
published by Yicai Global. Tier-1, new tier-1 and tier-2 
cities contain 4, 15, and 30 cities respectively. Figure 1 
shows a detailed geographical distribution of these cities 
across China. As is presented, geographical distribution 
becomes less significant- clusters of cities in coastal or 
southeast region, with less cities in the west. 

Traditionally, Tier-1 cities are often considered the 
megapolises of China. As the tiers progress, cities 
decrease in size, affluence, and move further away from 
prime locations. While city rankings may vary annually, 
there are very few changes in its tier. For example, Tier-
1 class has remained the same (i.e., Beijing, Shanghai, 
Guangzhou, and Shenzhen) since 2013. Furthermore, 
from 2017 to 2020, only two cities Hefei and Foshan 
displays a change in tier by upgrading themselves to a 
higher tier. Therefore, it is reasonable to assume the tier 
classification of 2020, in a certain degree, represents 
cities’ inherent and time-invariant characteristics in 
terms of geography, culture, history, and socio-economy. 
Specifically, this paper adds two dummy variables. T1 is 

assigned to one if a city is in the first tier and zero 
otherwise. T2 is assigned to one if a city is in Tier-2 class 
and zero otherwise. 

Carbon emissions: Yi et al. (2017) estimate CO2 
emissions by fossil energy consumption such as raw coal, 
fuel coal, fuel oil and liquefied petroleum Gas (LPG). 
Since more than 90% of carbon emissions come from 
fossil-fuels, this paper adopts Yi et al. (2017)’s 
methodology and adapts it to suit the Chinese context. 
Due to the absence of data, LPG, man-made coal gas and 
natural gas are the main energy consumption sources 
being considered here. 

Compact city indicators: This paper proposes 
compactness evaluation indicators from three 
dimensions: (1)urban form, (2)spatial structure, and (3) 
infrastructure efficiency. Urban form reflects the 
population distribution within the built-up area and is 
calculated by dividing the urban district population by 
built-up area. Spatial structure which involves cities’ 
mixed-land use and spatial employment distribution 
follows the tradition in the urban economics and land use 
literature. Mixed use of land is measured by “Balance 
degree” as Chen & Liu (2001) have suggested. 
Employment distribution is represented by the share of 
employed population of a city’s urban districts (Shiqu) to 
its total employment (EMP). It reflects how 
disproportionately jobs are clustered in the urban core 
instead of non-center areas such as counties and remote 
suburbs. Infrastructure efficiency is reflected in the 
efficiency of the use of public service facilities. This paper 
uses road surface area per capita (PROAD) and motor 
vehicle for public transport per 10,000 people (PMV) as 
variables. 

Other control variables: These variables include 1) 
GDP per capita, measuring level of urban economic 

 
 

Fig 1 Geographical distribution of high-tier cities. 
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development, economic growth and affluence, and 2) 
percentage of secondary industry to GDP, representing 
economic structure.  

Urban construction land information is from China 
Urban Construction Statistical Yearbook. Information 
about gas consumption, public transport and the rest of 
data are collected from China City Statistical Yearbooks 
from 2002 - 2018. The definitions of variables are shown 
in Table 1. The descriptive statistics are shown in Figure 
2. 

2.2 Methods 

2.2.1 Estimation of CO2 emissions 

CO2 emissions are estimated according to The 
Calculation Method of CO2 Emissions in Petrochemical 
Production published by Ministry of Industry and 
Information Technology of China in 2011, with reference 
to the Intergovernmental Panel on Climate Change 
(IPCC). The formula is as follows: 

∑ 𝐶𝐸𝑖 = ∑ 𝐹𝑄𝑖 × 𝑁𝐶𝑉𝑖 × 𝐸𝐹𝑖 

where CEi is CO2 emissions from combustion of 
certain fuels (LPG, man-made coal gas and natural gas 

are considered here); FQi denotes the consumption data 
of this certain type of fuel; NCVi represents net calorific 
value also known as lower heating value; EFi is the carbon 
emission coefficient. Net calorific values of different 
fuels and corresponding emission factors are shown in 
Table 2. 

2.2.2 Estimation of mixed-land use 

Entropy is a state function based on the second law 
of thermodynamics to describe the irreversibility of 
spontaneous processes. Shannon introduced the 
concept of entropy into information theory in 1948 to 
describe uncertainty, stability, and amount of 

Table 1 Variables’ definitions 

Variables Definition 

CO2 Carbon emissions (t) 
POP The population density in built-up area (net density) (10,000 people/km2) 
J Balance degree 
EMP Share of employment in urban central district to total employment 
PROAD Road surface area per capita (m2 ) 
PMV Motor vehicle for public transport per ten thousand people (Standard Units) 
PGDP GDP per capita (RMB) 
SGDP Percentage of secondary industry contribution to total GDP (%) 
T1 Dummy variable. Equals ones if a city is in Tier-1 class and zero otherwise 
T2 Dummy variable. Equals ones if a city is in Tier-2 class and zero otherwise 

 

 
Fig 2 Descriptive statistics of variables. 

Table 2 CO2 emission estimation coefficients 

Types of fuel Net calorific 
values (MJ/ m3) 

CO2 emission 
factors (kg/MJ) 

Man-made coal 
gas 

18.003 0.0373 

Natural gas 38.931 0.0543 

Liquefied 
petroleum gas 

50.179MJ/kg 0.0616 
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information (Yan et al., 2006). In Chen & Liu (2001)’s 
research, the entropy of information (H) of land structure 
is given by the following: 

𝐻 = − ∑(𝐴𝑖/ ∑ 𝐴𝑖)

𝑁

𝑖

log(𝐴𝑖/ ∑(𝐴𝑖

𝑁

𝑖

)

𝑁

𝑖

 

where Ai is the area of land in a certain use (eg., 
residential area, area for industrial operation, area for 
public utilities, area for storage, area for municipal 
utilities and greenland area, etc.); N is the total number 
of different land categories.  

While Chen & Liu (2001) have proven the use of H in 
measuring urban land use structure, they point out that 
one existing problem is the variance in the number of 
land types (N) across cities and in different time period. 
The H values calculated by different N is therefore no 
longer comparable. To solve this problem, balance 
degree (J) is introduced: 

 

𝐽 = 𝐻/𝐻𝑚 ;    𝐻𝑚 = log 𝑁  
 

where Hm is the maximum information entropy of 
land structure, representing the most diverse land 
system. Therefore, J can only take values between 0 and 
1. By definition, A higher J indicates a more complex, 
mixed, balanced land use and therefore a more compact 
city. Table A3 lists the top ten cities in terms of POP, J, 
RES, PROAD and PMV in 2020. 
2.2.3 random effects model 

The paper employs a panel model to investigate the 
relationship between compact city and carbon 
emissions. 

 

ln(𝐶𝑂2)𝑖𝑡 = 𝛽0𝑧𝑖 + 𝛽1(𝐶𝑂𝑀𝑃)𝑖𝑡 + 𝛽2(𝐶𝑂𝑁𝑇𝑅)𝑖𝑡 + 𝜀𝑖𝑡  
 

where CO2 represents CO2 emissions; COMP is a 
vector representing compactness variables, including net 
density (POP), balance degree (J), share of employment 
in urban district to total employment (EMP), road surface 
area per capita (PROAD) and motor vehicle for public 
transport per 10,000 people (PMV); CONTR denotes the 
vector for other control variables, including GDP per 
capita (PGDP) and percentage of secondary industry to 
GDP (SGDP); zi are time-invariant variables, including two 
dummy variables T1 and T2 to indicate whether the city 
belongs to Tier-1, new Tier-1 or Tier-2 class; εit is the 
error term. 

Before the regression analysis, unit-root test is 
performed to avoid spurious regression. The paper uses 
LLC, IPS, Fisher-ADF and Fisher-PP tests on all variables. 
The results show first order stationarity. Then panel 
cointegration test is performed using Pedron test and 
Kao test, both of which indicate constant co-variance 

over time. The VIF results suggest the variables do not 
suffer a high degree of multicollinearity. Therefore, long-
run relation can be modeled. Random effects models are 
selected over pooled OLS as a result of Breusch-Pagan 
LM test. 

3. RESULTS AND DISCUSSIONS 
Figure 3 reports the regression results of all 6 

models. Model 1, considering only control variables 
(LnPGDP and LnSGDP), is used to test the prevalence of 
Environmental Kuznets Curve (EKC) hypothesis, which 
undertakes upturned-U shape bond amid economic 
growth and environment pollutants (Yasin et al., 2020). 
The significantly positive impact of PGDP in all 6 models 
is consistent with existing literature (eg., Yi et al., 2017; 
Liu et al., 2020), suggesting that China has not reached 
the inflection point of EKC and that urban development 
level is still on the left side of the curve. The negative 
impact of SGDP is somewhat unexpected. One 
justification could be that, according to Li, Zhang & Jiang 
(2019a), China’s green industry policies can be 
distinguished into three stages: development without 
green industrial policy (1978—1999); awakening to the 
significance of green industrial policy (2000—2011); 
developing stage of green industry policy (2012-today). 
We are, therefore, currently in a period during which 
green policies have been initiated and implemented, 
which accords with our results since the data taken is 
from 2002 to 2018. 

Model 2-6 extend model 1 by adding different 
indicators for measuring compactness. Model 3 includes 
J, indicator of mixed land use. The coefficient is negative 
and significant at 10% confidence level, implying that a 
more diverse and balanced land structure might lead to 

less carbon emission. This is consistent with the research 
of P érez-Soba et al. (2008), in which they suggest that 
multifunctional land use can be seen as a way towards 
sustainability. Moreover, mixed-land use pattern may 
reduce commuting distance and therefore related 
emissions. Model 4 considers EMP, measuring 
population distribution across the city. A positive effect 
has been found amid employment centralization and 
carbon emissions. This may be explained by the 
assumption that as central urban district develops to 
welcome more employment, cost of living has also 
grown higher especially housing expense. Consequently, 
living in satellite communities instead of urban center 
has become a popular choice among people. The 
assumption has been justified by Shanghai’s example. 
While the city has remained its monocentric spatial 
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structure from 2000 to 2010, a polycentric spatial 
pattern is emerging as a result of decreasing difference 
in housing population density between urban center and 
the suburbs (Wang & Yang, 2015). Housing 
suburbanization therefore comes as a result of 
employment centralization, causing the “increase in 
household driving, home fuel consumption, and land 
consumption brought about by population dispersion” 
(Kahn, 2000). 

Model 5 and 6 investigate PROAD and PMV in terms 
of infrastructure efficiency. In line with Liu et al. (2020) 
and Yi et al. (2017), the coefficient of PROAD is positive 
and significant at 10% confidence level, suggesting that 
higher per capita road area leads to more CO2 emissions. 
One reason could be that a relatively developed urban 
road network indicates a high level of suburbanization as 
road construction encroaches on the surrounding 
countryside. Model 6 contains all independent variables. 
While public transport service is supposed to replace and 

reduce private car travel, thus reducing oil consumption 
and carbon emissions (Yi et al., 2017), the significant 
positive effects of PMV on carbon emissions is 
unexpected. According to Li, Xiong & Wang (2019b), a 
higher number of buses per capita may increase urban 
congestion, which could be one of the reasons leading to 
more CO2 emissions. Another possible explanation is that 
a high PMV does not necessarily lead to a lower share of 
private car travel. In fact, according to a recent market 
research by Ipsos, more Chinese people prefer to travel 
by private vehicles instead of public transportation 
especially during the COVID-19 period. In all 6 models, 
the two dummy variables T1 and T2 indicating city 
ranking remain significantly positive and negative 
respectively. Other things being equal, this suggests 
higher carbon emissions in more developed cities. 

 
 

Fig 3 Panel regression results with carbon emissions as the dependent variable. 
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4. CONCLUSIONS 
Among all compact variables for measuring urban 

form, spatial structure and infrastructure efficiency, only 
mixed land use is found to be negatively associated with 
carbon emissions. In other words, multifunctional land 
use has generally resulted in less carbon production. 
Infrastructure efficiency, however, does not necessarily 
contribute to carbon emissions reduction. In addition, 
employment centralization creates housing 
suburbanization and therefore increases carbon 
emissions. Analysis on the two control variables suggests 
that China has not reached the inflection point of the 
Environmental Kuznets Curve and that green industry 

policies in China has been highly effective in industry 
transformation. Moreover, Highly ranking cities is 
related with more carbon emissions. 

The paper’s findings contribute additional evidence 
to current literature and also provide theoretical support 
for future related policy making. On the one hand, for 
example, instead of focusing on increasing motor 
vehicles for public transport, encouraging increased 
participation in replacing and reducing private car travel 
may be more effective in alleviating traffic carbon 
emissions. For cities with centralized employment, a 
reasonable allocation of housing may reduce the 
imbalance of settlement distribution between urban 
center and suburbs, thus contributing to emissions 
reduction. On the other hand, cities may pay attention to 
the financial allocation to medical resources as well as 
economic development. 
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