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ABSTRACT 
Energy demand increase due to large deployment of 

electric vehicles combined with volatile decentralized 
renewable energy production is bringing up new 
challenges in the transmission network. Power quality 
issues might be avoided taking advantage from the 
flexibility offered by the charging process to match the 
local renewable energy production. However, the 
potential benefits from a controlled electric vehicle 
charging process could be optimally exploited only if 
electric vehicles energy demand is reliably evaluated. 

This study proposes a detailed methodology to 
evaluate the load of a working place charging station, in 
order to further optimally design a second life battery 
storage system for ancillary services provision. In details, 
the electric vehicles energy demand has been estimated 
using a multiple linear regression model that links the 
vehicles battery energy consumption with microscopic 
driving parameters (such as speed and acceleration). In 
particular, the model inputs are typical driving cycles 
performed by the employees to reach the working place. 
These representative speed profiles have been 
reconstructed with a Markov chain-based method using 
real-world collected data. 

The proposed approach allows to predict the battery 
energy consumption with a Mean Absolute Error less 
than 18% and with a correlation coefficient R2 of 99%.   

 
Keywords: Electric Vehicles, Energy Consumption 
Prediction, Markov chain theory, Multiple Linear 
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NOMENCLATURE 

𝑑𝐸  
Mechanical Energy [kWh] 

𝑚 
Total vehicle mass [kg] 

𝑚𝑓  
Fictive mass of rolling inertia [kg] 

𝑔 
Gravitational acceleration [m/s2] 

𝑓 
Vehicle coefficient of rolling resistance [-] 

𝜗 
Road gradient angle [°] 

𝜌 
Air density [kg/m3] 

𝐶𝑥  
Drag coefficient of the vehicle [-] 

𝐴 
Vehicle equivalent cross section [m2] 

𝑣𝐸𝑉  
Vehicle speed [km/h] 

𝑣𝑤  
Wind speed [km/h] 

𝑑𝑠, 𝑠 
Distance driven [km] 

𝐴𝑢𝑥𝑡  
Time scaling term 

𝑘 
Segment (micro-trip) of a trip 

𝐾 
Number of segments in a trip 

𝑎 
Acceleration  

𝑡 
Time  

𝐵𝑥  
Regression coefficients 

𝐶𝑀𝐹𝑘
𝑝

 
Positive Constant Motion Factor 

𝐶𝑀𝐹𝑘
𝑛

 
Negative Constant Motion Factor 

𝜀 
Error term 

𝑛 
Number of data points in micro-trip 𝑘 
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1. INTRODUCTION 
Market diffusion of electric vehicles (EVs) is 

undergoing very rapid growth. The International Energy 
Agency measured a 40% year-on-year increase on EV 
sales and, according to a Sustainable Development 
Scenario, foresees a 36% annually growth in the global 
EV stocks until 2030 [1]. These projections suggest that 
EVs are likely to play an important role for power systems 
in the near term. However, several difficulties for the 
distribution system operator (DSO) at regional and/or 
local levels could arise from non-uniform EVs charging 
demand and increasing charging power level. In order to 
avoid voltage and frequency drops, grid congestion, 
increase of electricity costs and overload on the local 
electrical components, several studies in literature 
proposed the deployment of smart charging strategies 
[2][3][4][5][6]. From the aforementioned works it 
emerges that a key aspect for implementing an effective 
charging strategy is the proper modelling of the energy 
demand at the charging station. Most of the time this is 
estimated using a probability distribution function 
(uniform or log-normal) evaluated from available 
historical data. For example, authors in [7] have used 
driving patterns from the National Household Travel 
Survey to simulate workplace charging station under 
various scenarios, while in [8] and [9] uncertainties in 
battery initial and final states of  charge,  arrival and 
departure time,  EV models mix at the station road 
characteristics and traffic conditions have been taken 
into account. 

Thus, while great efforts have already been done to 
model the uncertainties due to EVs connection and 
dwelling time, there is still a lack of studies focusing on a 
proper estimation of the EV consumption for smart 
charging applications. Usually, the vehicles energy 
demand is modelled throughout a probability function 
defining the load profile of an overall parking lot. Even 
though this approach allows to catch the uncertainties 
globally, it could led to an ineffective prediction of the 
charging station load due to missing details related to the 
impact of each user driving behavior and habits [10].  

This study proposes a systematic modeling of the 
electric load for EV charging stations taking into account, 
differently from most of the available papers in 
literature, real driving patterns of EVs users. The input of 
the model are velocity profiles over time obtained from 
GPS data. In order to preserve the privacy of the EV 
owners a driving cycle reconstruction method with the 
aim to generate representative speed profiles equivalent 

to the real ones has been implemented. In particular, 
Markov chain theory has been used to this end.  

The paper is organized as follow: the EVs energy 
consumption model and the driving cycle reconstruction 
method are presented in section 2, the achieved results 
are shown and discussed respectively in section 3, and 
section 4.  

2. TRIP ENERGY CONSUMPTION MODEL 
This study aims at evaluating the electric energy 

demand at a workplace, specifically at the research 
center “ENEA La Casaccia” located in Rome (Italy), with 
the ultimate objective to properly design a second life 
battery storage system to provide ancillary services to 
the electric grid. Two main categories of parameters 
have been used to develop the proposed methodology. 
The first category includes the arrival and dwelling time 
of the employees at the workplace, and an estimation of 
the distance driven in urban and extra-urban road during 
daily commute. These information have been collected 
for some specific users for an entire year with the aim to 
fully characterize the variability of the daily energy 
demand of the charging station. Example of the available 
data is reported in Table 1. The second category, instead, 
consists of GPS data and battery output current 
measurement of the missions of a specific EV under 
different operating conditions (urban, extra-urban road).  
From the available data typical real driving parameters 
and energy consumption values have been extrapolated. 
The procedures implemented to reconstruct the 
representative driving cycles and evaluate the battery 
energy consumption are further described in the next 
sections. 

Table 1 – Example of information gathered at the ENEA 
La Casaccia parking. 

User 
Distance Driven  

[km] 
Day of  

the Year 
Time  

Arrival 
Dwelling  
Time [h] 

 Urban Extra-Urban    

1 2.82 101.69 9 08:44 7.49 

2 80.94 19.65 7 07:23 9.26 

3 31.23 17.78 8 09:28 10.6 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

2.1 Driving Cycle reconstruction 
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In literature there are mainly two approaches to 
build representative driving cycles. The first one is based 
on the combination of various driving modes (such as idle 
speed, acceleration, deceleration and constant speed) 
and it is the methodology used for example for the 
definition of the European Test Cycle (ECE) and New 
European driving cycle (NEDC). The second one is usually 
called “real-world cycle” as being derived from actual 
driving data [11]. This allows to consider specific 
characteristics, like road and traffic conditions, as well as 
driving habits of the specific user and location under 
study. In this work a procedure based on the second 
approach has been used, namely the Markov chain 
method. Several works have proven the effectiveness 
and the reliability of this methodology in reflecting 
specific real driving conditions [11–13] and in dealing 
with the random property of driving cycles [14].  

The Markov chain-based reconstruction method 
mainly includes 3 steps: data collection, driving cycle 
reconstruction and driving cycle evaluation. For the first 
step, GPS data of a Nissan Leaf vehicle (having technical 
characteristics compatible with common vehicles used 
by the research center employees) have been collected 
under different operating conditions. Velocity and 
acceleration have been selected to define the vehicle 
dynamic state. Historical driving cycles have been 
encoded discretizing the speed and acceleration with a 
resolution of 2 km/h and 0.2 m/s2, and 1 km/h and 0.2 
m/s2 respectively for extra-urban and urban roads.  

The Markov property claims that future states of a 
systems depend only on the current one. The probability 
of transition from one vehicle dynamic state to another 
in a time unit is defined on the basis of the Transition 
Probability Matrix (TPM)  [14], which is calculated using 
real-world driving data of the EV.  

The procedure to build a driving cycle is therefore 
the following. First of all, the driving cycle is initialized to 
the initial state of zero velocity and acceleration. Then, 
the Roulette Wheel Selection algorithm is used to 
generate the random following state number and the 
process continues until a representative number of step 
for the driving cycle have been reached.  

In order to verify the representativeness of the 
generated driving cycles with respect to the real ones a 
comparison of the Speed and Acceleration Probability 
Distribution (SAPD) with the original data has been 
performed. As Figure 1 illustrates, the generated SAPDs 
(right side of the Figure) are consistent with the original 
ones (left side of the Figure). A further confirmation 
derives from the evaluation of the Mean Squared Errors 

(MSE) between the generated and original SAPDs, which 
are for both Urban and Extra-Urban case below the 1%. 

2.2 Energy Consumption Estimation Method 

Several energy consumption estimation models have 
been proposed in literature with the purpose of EV 
drivetrain design and optimization, range prediction, 
energy-efficient routing allocation and charge impact 
estimation on the electricity grid [15–18]. Generally, two 
approaches are the most common used: statistical 
models based on physical principles, or machine learning 
techniques. In order to preserve the physical 
interpretability of the results and the computational 
simplicity, the first framework has been adopted in this 
study, implementing a Multiple Linear Regression (MLR) 
model. Moreover, as De Cauwer et al. claimed in [17], 
since any statistical model is based on real-world 
measured data, the external influences are implicitly 
present in the dataset and, therefore, the resulting 
model is not calibrated only on some specific operating 
conditions. 

The MLR framework has been evaluated as in [17] 
starting from the physical modeling of the forces acting 
on the vehicle in motion. The mechanical energy 𝑑𝐸 
required at the wheel to cover a distance 𝑑𝑠 could be 
expressed as: 

 

 
Figure 1. Speed and Acceleration Probability 

Distribution Function of orginal urban cycles (a), generated 
urban cycles (b), orginal extra-urban cycles (c), generated 

extra-urban cycles (d).         
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𝑑𝐸 =
1

3600
[𝑚𝑔(𝑓𝑐𝑜𝑠𝜗 + 𝑠𝑖𝑛𝜗)

+  
1

2
(𝜌𝐶𝑥𝐴

(𝑣𝐸𝑉 +  𝑣𝑤)2

3.6
) +   (𝑚

+  𝑚𝑓)
𝑑𝑣𝐸𝑉

𝑑𝑡
] 𝑑𝑠 

 

(1) 

The terms on the right-hand side of eq. (1) represent 
respectively the rolling resistance, potential energy, 
aerodynamic losses, and inertial energy. Assuming in a 
first order approximation the rolling resistance 
coefficient, drag coefficient, air density and vehicle mass 
constant, and neglecting the wind speed contribution, 
the energy consumption can be described as a linear 
combination of the kinematic parameters 𝑑𝑠 , 𝑣2𝑑𝑠,
𝑑𝑣

𝑑𝑡
𝑑𝑠, and ℎ = 𝑑𝑠 ∙ 𝑠𝑖𝑛𝜗. Due to the lack of elevation 

information in the reconstruction process, the 
contribution given by potential energy (term 
proportional to ℎ ) has been neglected in this study. 
However, being the elevation variation of the territory 
around the research center limited, the assumption does 
not significantly affect the results. To represent the 
consumption of the auxiliaries, the formula has been 
extended with a time-linear dependent term. Therefore, 
the corresponding linear expression of eq. (1) is: 

𝐸𝐸𝑉 =  𝐵1𝑠 +  𝐵2𝑣𝐸𝑉
2 𝑠 +  𝐵3𝑎 𝑠 +  𝐵4ℎ +  𝐵5𝐴𝑢𝑥𝑡𝑡 (2) 

The coefficients 𝐵1, 𝐵2, 𝐵3, 𝐵4 and 𝐵5  could then 
be evaluated applying a MLR analysis on the real-world 
driving and battery energy consumption data. In 
particular, the regression analysis is performed splitting 
the trips into shorter segments (𝑘), evaluating the energy 
consumption on these segments and combining them for 
the estimation of a full trip energy demand [17]. 
Accordingly, eq. (2) could be rewritten as: 

𝐸𝑇𝑅𝐼𝑃 =  ∑ 𝐸𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

=  ∑ [𝐵1 ∆𝑠𝑘

𝐾

𝑘=1

+  𝐵2(∑ 𝑣𝐸𝑉,𝑖
2 ) ∆𝑠𝑘

𝑛

𝑖

+  𝐵3(𝐶𝑀𝐹𝑘
𝑝)∆𝑠𝑘 +  𝐵4(𝐶𝑀𝐹𝑘

𝑛)∆𝑠𝑘

+ 𝐵5∆𝑡𝑘 +  𝜀] 

 

 
(3) 

With 𝐶𝑀𝐹𝑘 =  
∑ |𝑣𝐸𝑉,𝑖

2 −𝑣𝐸𝑉,𝑖−1
2 | 𝑛

𝑖=2

∆𝑠𝑘
            (4) 

 
The constant motion factor (𝐶𝑀𝐹) is the sum of the 

change in kinetic energy per unit distance and it replaces 
the acceleration term in eq (2). Positive and negative 
changes in kinetic energy have been separated into two 

terms: 𝐶𝑀𝐹𝑠
𝑝

 and  𝐶𝑀𝐹𝑠
𝑛 respectively. 

The split of the full trips into shorter segments is 
crucial for the accuracy of the proposed method. Indeed, 
the simplified linear representation of the energy 
consumption expressed in eq. (3) requires a minimum 
level of data points aggregation for accuracy, but over-
aggregation of the predictors could lead to loss of 
estimation variability [17]. In this study, each segment 
has been identified by a so-called “micro-trip” (i.e. a 
sequence of driving data between successive stops). 
From the driving data generated with Markov chain 
approach, two distinct sets of micro-trips have been 
individuated: urban micro-trips (if maximum speed was 
below 50km/h) and extra-urban micro-trips. A complete 
trip has then been evaluated throughout the 
concatenation of urban and extra-urban micro-trips until 
the total distance covered satisfies the distance 

 
Figure 2. Overview of the proposed model for energy 

consumption prediction.      
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registered during the experimental campaign for the 
research center worker in urban and extra-urban roads 
(Table 1). An overview of the proposed method is given 
in Figure 2. 

3. RESULTS AND DISCUSSION 
The MLR analysis based on the segmentation process 

presented in the previous section has been performed 
using the fit linear regression function in Matlab. Results 
in terms of regression coefficients and corresponding p-
values are showed in Table 2. All the p-values below 10-5 

indicate which terms are more significant.  

 
Figure 3 and 4 shows the regression plots for the 

single micro-trips and the complete trips, respectively. 

 It can be seen that the energy predictions points 
mainly lie on the 1:1 line in the observed vs predicted 
data plot for the micro-trips, thus validating the accuracy 
of the energy consumption model and confirming the 
choice of the selected predictors.  

A greater bias between the predicted points and the 
1:1 line can be observed in Figure 4. This can be 
explained considering that the energy prediction errors 
in the micro-trips are not symmetrically distributed, thus 
they tend to sum up together when recombined to trips.  

Some performance indicators for MLR energy 
consumption model have been calculated and shown in 

Table 3. Although all the values calculated for the 
complete trips are lower than the single micro-trips ones, 
both the correlation and the R2 are above 98%, 
confirming the accuracy and the reliability of the energy 
consumption model in predicting a trip energy demand.  
 

  Correlation RMSE MAE R2 

Micro-trip 0.9917 0.0252 0.0108 0.9846 

Trip 0.9800 0.1841 0.1711 0.9886 

Table 3 – Correlation Evaluation Parameters 
In the end, matching the results of energy 

consumption estimation for the EVs reaching the 
working place with their registered time of arrival, it is 
possible to evaluate the energy demand profile over 
time. This it has been done for all the days of the year. 
Then, to identify a reference energy demand considering 

 

Intercept 
Rolling  

Resistence  
(B1) 

Aerodynamic  
(B2) 

Positive 
Acceleration  

(B3) 

Negative  
Acceleration  

(B4) 

Auxiliaries  
(B5) 

Coefficient 0.00332516 0.169241356 -6.37E-06 0.029709581 0.000242606 -0.0001648 

p-value <0.2 < 0.0001 < 0.05 < 0.0001 < 0.0002 < 0.2 

Table 2 – Results of the MLR analysis for the complete trip energy consumption estimation 

 
Figure 3. Regression plot for the energy prediction 

over the micro-trips      

 
Figure 4. Regression plot for the energy prediction over 

the complete trips.    

 
Figure 5. Average energy demand profile for working days 

(blue lines) and weekend days (red line) at the EV 
charging station  
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uncertainties, a cluster analysis has been carried out. As 
shown in Figure 5 two main patterns can be recognize: 
energy profile for working days (from Monday to Friday) 
and weekend (Saturday and Sunday).   These profiles 
can be used to design a second life battery energy 
storage system and optimally control the charging 
process to provide ancillary service to the grid. 

4. CONCLUTIONS 
A detailed and reliable estimation of the EVs energy 

charging demand is essential to optimally design an EV 
charging station. Indeed, matching the information of 
energy magnitude with EV presence profile in time at a 
parking lot, it is possible to define the size of an electrical 
storage system to better fit the users’ requirements and 
provide ancillary services to the grid.  

This study proposed a comprehensive methodology 
to estimate the EVs energy demand based on a Multiple 
Linear Regression model. To preserve the privacy of the 
users’ data, a Markov chain-based method has been 
implemented to reconstruct representative real-driving 
cycles with a Mean Squared Error below the 1% with 
respect to the original ones.  

Moreover, the accuracy of trip energy estimation for 
the implemented MLR model has been validated by the 
achievement of a correlation coefficient between the 
real and the predicted energy consumption above the 
98%. The obtained results confirm the reliability with 
which the overall charging station energy demand profile 
has been calculated. 
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