Volume 7: Urban Energy Systems: Building, Transport, Environment, Industry, and Integration

Demand Response From a Peer-To-Peer Energy Trading Community Yue Zhou, Jianzhong Wu, Guanyu Song*, Chao Long



In order to address the various challenges and well utilize the opportunities brought by the increasing penetration of distributed energy resources at the demand side of power systems, a new paradigm, peerto-peer (P2P) energy trading, has emerged in recent years, where prosumers and consumers are able to directly trade energy with each other. Besides the inherent potential benefits such as facilitating local power and energy balancing, a P2P energy trading community as a whole also has the potential to provide ancillary services to power systems to create additional value. In this paper, a price-based mechanism was proposed, in which the customers of a P2P energy trading community can further respond to the price signals issued by power utilities to provide ancillary services such as demand reduction and generation curtailment. A continuous double auction with a residual balancing mechanism was proposed as the P2P energy trading mechanism. Simulation results verify that the proposed mechanisms are able to increase the social welfare of the whole P2P energy trading community without compromising any individual’s interests, and at the same time incentivize customers to provide ancillary services to power utilities.

Keywords demand response, peer-to-peer energy trading, continuous double auction, local electricity market, distributed energy resource, microgrid

Copyright ©
Energy Proceedings