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ABSTRACT 
Hydro power production strictly depends on the 

geography and weather peculiarity of locations where 
power plants are settled. In this paper, we produce long 
term estimates of hydro power capacity factors for all 
European countries based on future climate scenarios. 
We use machine learning techniques for formalizing 
models able to capture the complex relation between 
climate variables and energy production on a European 
scale and use the results of regional and global climate 
models for future projections. 
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1. INTRODUCTION 
Hydro power (HP) is the world’s most dominant 

(86%) source of renewable electrical energy. Installed 
hydro power capacity continues to grow quickly with 
the aim at decreasing carbon-based or nuclear power 
generation. During 2017, an additional 21.9 GW of 
installed hydropower capacity was added worldwide 
(2.3 GW in Europe) [1]. Table 1 reports the top five 
European countries by installed hydropower capacity in  

2018. It also shows the total generated HP and the 
difference between the maximum and minimum values 
of HP generation along the year [2]. 
 

HP is either produced in run-of-river plants with low 
hydraulic heads and small reservoirs or from water 
stored in accumulation lakes with hydraulic heads up to 
several hundred meters, possibly with recirculation of 
water between lower and higher level reservoirs in so-
called pump-storage systems. Among these existing 
technologies, the run-of-river based one is the most 
affected by meteorology and for this reason the most 
interesting to be studied. Typically, it generates 
electricity according to the water flow. This latter is 
defined by seasonal patterns of precipitations, 
evaporation, drainage, and other characteristics, which 
all depend on the geography and weather peculiarity of 
power plants locations. Figure 1 provides an overview 

on the variation of the run-of-river HP generation for 
some European countries obtained by considering 
climate forecasts over the year 2030. More details 
about climate data and the derivation of the HP 
prediction are provided in the next section. Although 
the seasonal patterns of wet and dry seasons are 
relatively predictable, they are not guaranteed and can 

Country INST CAP (*) [MW] ToT GEN [GW] DIFF [MW] 

Norway 28147 208570 29829 

Spain 21125 153770 21945 

France 19800 60538 11515 

Sweden 17277 64036 13119 

Italy 15559 44484 9494 

Table 1: Top five countries by installed hydropower capacity 
(2018) (*) excluding pump-storage systems. 

 

 

 

 

 
Fig 1: Estimated capacity factor of run-of-river hydro power 
generation over 2030.  
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change from one year to another. An assessment of 
climate change impacts on HP generation in different 
climate regions requires an in-depth analysis of 
individual case studies. Given the dominance of local 
conditions, generalizations are difficult, sometimes even 
for small regions. By what discussed so far it is clear that 
the definition of a common hydrological model for all 
European countries subject to different climate 
conditions is not an easy task. In this paper, we use 
Machine Learning (ML) techniques which have the 
advantage of catching specific trends and patterns in 
large volumes of data. The obtained models along with 
the forecast of climate data are then used for the 
prediction of the daily national HP generation in terms 
of capacity factor (i.e., fraction of produced power over 
the installed one) for all European countries. Although 
ML was already proposed in the literature for wind 
power and solar production and for the run-off forecast, 
as the best of our knowledge few attention has been 
dedicated to the long term HP impacted by long term 
climate forecast. 

2. METHODOLOGY AND DATA COLLECTION  

2.1 Methodology 

ML has been gaining more and more importance in 
many areas of science, finance and industry. It is 
typically used to predict an outcome based on a set of 
features. Clearly, in the case of the present paper, the 
outcome is the HP generation and the features are the 
climate variables. The workflow of the ML procedure is 
given in Fig. 2. The procedure starts by training a so-
called (supervised) learner with a set of data including 
the observed outcome and feature measurements. This 
leads to build a model, which enables predicting the 
unobserved outcome based on a different set of input 
features. A good learner is one that accurately predicts 
such an outcome. In order to select the ML technique 
that would provide the best prediction, we tested five 
well-established ML algorithms: Linear Regressor, 
Support Vector Machine, Boosted Ensemble of Trees, 
Random Forests (RF) and Artificial Neural Networks 
(ANN) [3]. The first four regression methods were 
implemented in the Statistics and Machine Learning 
Toolbox 11.4, while the ANN was in the Deep Learning 
Toolbox 12.0 in MATLAB® R2018b.  

For the training and validation of ML models, 
observed climate and energy data are required. 
Meteorological data include the daily time series of 
precipitations and air temperature aggregated at NUTS 

2 level. Historical climate data covering the period 1989 
to 2018 are from Deutscher Wetterdienst [4]. 

 
Fig 2: Machine Learning work flow 

For the energy data, we considered values starting 
from 2010. Note that the lack of historical data of HP 
generation is a serious issue. Since January 2015, energy 
demand and generation data were collected at hourly 
time resolution for almost all countries in Europe and 
are available at the ENTSOE web server [2]. This dataset 
has been completed by data from the ECEM project [6]. 

In the validation phase, we compared the output 
model with observed data and we measured the 
performance of the five algorithms in terms of 
correlation coefficient, adjusted coefficient of 
determination, mean absolute and mean square 
percentage errors. This comparison indicated that the 
models based on Random Forests exhibit the best 
performance (e.g., correlation coefficient in the 
validation phase equal to 0.86 for France, 0.90 for 
Portugal and 0.95 for Spain). Hence, the results 
presented in this paper are obtained by using the RF 
algorithm.  

2.2  Future climate data 

The future projections are provided by [5]. These are 
generated by considering five combinations of global 
and regional climate models as listed in Table 2.  

Table 2: List of regional climate models (RCM) and global 
climate models (GCM). 

Forecast of climate data are generated considering 
a Representative Concentration Pathways (RCP) set as 
both 4.5 and 8.5. These are scenarios including time 
series of emission and concentration of the full suite of 
greenhouse gases and aerosols and chemically active 
gases. The RCP4.5 is an intermediate stabilization 
pathway in which radiative forcing is stabilized at about 

Notation RCM GCM 

Mod1 KNMI-RACMO22E  ICHEC-EC-EARTH 

Mod2 DMI-HIRHAM5 ICHEC-EC-EARTH 

Mod3 IPSL-INERIS-WRF331F  IPSL-IPSL-CM5-MR  

Mod4 MPI-CSC-REMO2009  MPI-M-MPI-ESM-LR 

Mod5 SMHI-RCA4 ICHEC-EC-EARTH 
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4.5 ὡȾά , whereas for RCP8.5 the radiative forcing is 
assumed to reach values greater than 8.5 ὡȾά  by 
2100. Results presented in this paper refer only to 
RCP8.5. The projections cover the period from 2020 to 
2060, and we are particularly focused on the target 
years 2030 and 2050. It is important to mention that 
climate projections are not an estimation of the year-to-
year or season-to-season climate variables. Instead, 
they are estimations of the average conditions. Hence, 
for the prediction of HP generation over the years 2030 
and 2050, for each climate model we generate time 
series of air temperature and precipitations as the 
average over 20 years centered in 2030 and 2050, 
respectively. Note also that for improving the prediction 
power of ML techniques, we selected climate times 
series based on the Europe map of Köppen climate 
classification shown in Fig. 3 [7]. For instance, this 
means that for the prediction of HP generation in 
Portugal, climate data of neighbor Spanish regions are 
used. 

 

 
Fig 3: Europe map of Köppen climate classification. 

3. RESULTS 

In this section, we present the results obtained by 
the RF algorithm for the long term estimation of the HP 
capactity factor. Figure 4 shows the annual mean of the 
predicted capacity factor for the five different scenarios 
in Table 2. As expected, since we are looking at an 
average behavior, the results for all models are quite 
similar. The graphs show a predominance of Nord 
European countries, followed by the Iberian Peninsula, 
France, Italy and Nord East Europe. Figure 5 presents 
the anomalies of HP generation along the winter period 
(December-February) of 2050 with respect to 2000-
2018. In general, the prediction is close to the historical 
mean value. These results can be explained by looking 

at the climate forecasts. For instances, for the winter 
period in France an increase of almost 1 °C and only 1 
mm of precipitations is expected, instead in Portugal an 
increase of more than 2 mm of rains are predicted with 
only +0.5 °C in temperature. The highest anomalies are 
for Estonia and Ireland, followed by Portugal and Spain. 

 
Fig. 4: Annual mean of HP generation obtained by considering 
the five climate models over the year 2050. 

 

Fig 5: Anomalies in the run-of-river HP generation for the year 
2050 (winter period DJF). 
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Yet there are strong limitations of using only these 
average behaviors for future power generation 
assessment in Europe. In fact, to give a coherent picture 
of the future variability in HP generation in each country 
we need to consider the calendar variability of capacity 
factors, the variability induced by the different future 
climate models, and the variability associated to the 
sliding window of 20 years around each target year. As 
an example, we show the variability of the capacity 
factor along 20 years centered in 2050 in Portugal and 
France in Fig.s 6 and 7. From the perspective of the 
interconned European power system, Portugal and 
France are two archetypes of a peninsula and a highly 
interconnected systems.  

Fig 6: Variability of capacity factor over 20 years around 2050  
for Portugal by using climate model Mod3. 

 

Fig 7: Variability of capacity factor over 20 years around 2050 
for France by using climate model Mod2. 

Estimated 2050 capacity factors for HP generation in 
Portugal vary more strongly. This is in line with a more 
complex Köppen climate classification. During the 
winter period the values are within the interval 0.4-

0.79, with one critical year where the capacity factor is 
0.19 in January. The lowest value is achieved during one 
the 20 summer periods (August) when the capacity 
factor is about 0.07. The more uniform Köppen map for 
France justifies the smaller variability of the capacity 
factor in this country. 

4.  CONCLUSIONS 

Europe is expected to strongly expand its wind and 
solar power capacity by 2050 to meet its climate goals. 
In an interconnected system, balancing these highly 
intermittent sources by hydro power will also involve a 
European wide evaluation of the variability of HP 
generation for future climatic conditions. The 
methodological framework described in this paper 
offers the possibility of addressing this issue. The two 
main ingredients are: the formalization of an accurate 
ML model and the long term climate forecasts. Their 
combination provides an overview of the long term 
variability of capacity factors at country scale for 
Europe. 
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