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Abstract—Due to the harsh and changeable drilling 

environment and complex energy flow conditions, it is 

difficult to obtain an accurate and reliable energy 

consumption (EC) prediction model. To make up for the 

above shortcomings, taking into account the advantages of 

accurate and convenient power system measurement, an EC 

prediction model driven by a combination of mechanism and 

data is proposed. Based on the deviation between actual EC 

results and theoretical mechanism model calculation results, 

the least square support vector machine (LSSVM) data 

compensation model is established. And the whale 

optimization algorithm based on von Neumann topology is 

used to optimize the parameters of the LSSVM model. The 

experimental results show that the prediction error of the 

proposed method is 1.69%. Compared with the prediction 

results of the mechanism model and the data-driven model, 

the average prediction error of the proposed method is 

reduced by 0.27% and 2.9%.  

Keywords: drilling; energy consumption prediction;data 
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Ⅰ. INTRODUCTION 

Electric energy resources are mainly generated by burning 

fossil fuels, and the consumption of electric energy in the 

process of rock drilling and coring will produce a certain 

carbon footprint [1-2]. How to reduce the carbon emission in 

the process of drilling and excavation, reduce the energy 

consumption (EC) of drilling, and improve the energy is 

important. Based on this, the concept of mechanical specific 

energy (MSE) has attracted extensive attention in drilling 

rock breaking efficiency. Lu et al. [3] analyzed the 

relationship between MSE and drilling rate in different 

formations, optimized drilling methods, and determined a 

reasonable range of drilling parameters for complex and 

variable formations. Xie et al. [4] used the MSE value as the 

evaluation index of drillability and combined the extreme 

learning machine to classify the drillability of coal and rock. 

The variation law of drilling speed and MSE of PDC bit was 

studied from three aspects: material type, rotational speed, 

and weight on bit (WOB). Guan et al. [5] found that when 

drilling soft to medium-hard rock, increasing WOB and 

rotational speed did not lead to a significant increase in MSE 

value. When drilling hard rock, increasing the WOB and 

rotational speed results in a significant decrease in 

mechanical specific energy, reducing drilling efficiency. 

Chen et al. [6] established an accurate MSE model for PDM 

rotary drilling by analyzing the performance of the positive 

displacement motor. The experimental results show that the 

minimum MSE is roughly equal to the confined compressive 

strength of the formation along with the depth of the well. 

The above studies analyzed the influence of drilling rig 

working parameters on MSE but did not consider the 

influence degree of drilling rig working parameters on 

drilling energy. Li et al. [7] analyzed the influences of drilling 

rig impact power, rotational speed, propulsion force, and bit 

type on drilling SE by using the orthogonal test method, and 

the results showed that drilling rig SE was the lowest when 

drilling combination was 6.4kw, 240rpm and 3800N. Amjed 

Hassan et al. [8] collected the rotational speed, torque, WOB, 

and drilling rate in the process of drilling and coring, trained 

the artificial neural network model, and defined a new 

drilling efficiency evaluation index ROP/MSE, providing a 

fast and reliable evaluation for drilling operations. In the 

above research, the MSE value is used as an index to evaluate 

the efficiency of the drilling core. However, in practical 

engineering applications, the axial thrust and torque values 



of the drilling rig are not easy to control and measure, and 

the installation of the thrust and torque sensors indirectly 

affects the drilling efficiency. Considering the advantages of 

accurate, convenient, and cheap power parameter 

measurement, this paper uses drilling power as a bridge and 

uses a mechanism and data hybrid drive method to predict 

drilling EC and analyze drilling energy efficiency. 

Ⅱ. DATA COMPENSATION MODEL BASED ON 

LSSVM 

The mechanism model of EC during drilling and 

excavation is known, but the prediction results of EC are not 

accurate enough. Aiming at the problems existing in the 

mechanism model, to improve the accuracy of rig EC 

prediction during drilling and excavation, the data-driven 

model is used as an error compensator in parallel with the 

mechanism model to compensate and correct the mechanism 

model, as shown in Fig 1. 

Fig. 1. Hybrid drive schematic 

Among them, the data-driven model selects the least 

squares support vector machine (LSSVM) [9] and combines 

the whale optimization algorithm based on von Neumann 

topology to predict the drilling EC. Considering the length of 

the article, the optimization algorithm is not repeated here, 

see References 10 and 11 for details. Since LSSVM can 

convert traditional inequality constraints into equality 

constraints, nonlinear function mapping is used to realize the 

transformation of LSSVM input values into high-

dimensional space. Therefore, this paper uses the LSSVM 

method to determine the error compensation model between 

the actual rig EC and the calculated energy consumption. Set 

the sample data set  
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LSSVM function of the EC bias model mapped to the high-

dimensional space is as follows: 
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Where, ( )x is the nonlinear mapping function, b is the bias 

and is the weight vector value. Through high-dimensional 

space transformation, the function optimization problem of 

LSSVM can be transformed into the following form. 
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The constraint condition for transformation is 
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Among them,  is a penalty factor, which satisfies 0  , and 

is used to control the balance between training error and 

model complexity; ke is a slack variable. 

The Lagrangian transformation function L is 
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Where, ka is the Lagrange multiplier. It can be calculated by 

the KKT optimization condition. 
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Through calculation, the following formula is obtained: 
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Through the Mercer conditional calculation, the high-

dimensional mapping function  and the kernel function 

( , )k ik x x can be calculated by the formula (7). 
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Finally, the LSSVM regression function can be 

established as follows: 
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Among them, the values of a and b are calculated by the 

formula (6).  

In this paper, the radial basis function with good 
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generalization ability and wide convergence domain is 

selected as the kernel function of the LSSVM regression 

model, and its expression is as follows: 
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Among them,  is the width of the kernel function. 

Considering that the parameters and  seriously affect the 

learning ability and generalization ability of the LSSVM 

model, this paper uses the whale optimization algorithm 

based on von Neumann topology to optimize and analyze

and  . 

Ⅲ. EXPERIMENTAL VERIFICATION 

To verify the feasibility and advanced nature of the 

proposed method, in this section, the drilling test is carried 

out through the coal mine tunnel drilling rig. The 

experimental device is shown in Fig 2. The EC in the drilling 

process is mainly determined by the working parameters of 

the drilling rig (rotation speed, ROP value). The rotation 

speed and ROP value of the drilling tool are controlled by 

adjusting the gear of the drilling rig and the opening of the 

throttle valve. During the test, the ROP value was indirectly 

measured by the displacement sensor, and the data 

acquisition equipment was used in combination with 

DEWESOFTV7.1 software for data processing, the data 

acquisition instrument is shown in Fig 2b; the power signal 

is measured by FLUKE435-II power quality analyzer, as 

shown in Fig 2c. The energy efficiency of drilling and coring 

is determined by the ratio of the energy consumed by cutting 

the rock to the load energy. 

mdE

E
  (10) 

Among them, represents the energy efficiency of cutting 

the rock, and the energy consumed by cutting the rock and 

the total load energy are denoted by mdE and E . 

During drilling and coring, ROP values were averaged 10 

times in [1,2], [2,3], [3,4], [4,5], and [5,6] respectively, and 

energy parameters under 10 groups of test data were 

calculated, as shown in table 1. It was observed that at the 

same rotational speed, the larger the ROP value, the greater 

the power consumed by rock cutting, but the drilling time 

was greatly reduced, resulting in a reduction in the final EC, 

improved drilling energy efficiency, and achieved the 

purpose of energy saving. The average ROP value and the 

load power curve were fitted to obtain the EC mechanism 

model of the drilling rig. The details are as follows: the fitting 

curves of the drilling rig at 123 rpm and 220 rpm are
2225.23 3216.6, =0.97y x R  and 2236.69 3544, =0.98y x R  , 

respectively. Among them, the R2 value is approximately 

equal to 1, indicating that the ROP value fits well with the 

drilling load power, and the magnitude of the load power 

value can be indirectly reflected by the ROP value during the 

drilling process. The lower the speed and ROP value, the 

smaller the load power value; the lower the load EC obtained 

under the parameter combination of low speed and high ROP 

value; the greater the rig rotational speed and ROP value, the 

greater the energy efficiency value. The results show that the 

optimal parameter combinations for low power, low EC, and 

high energy efficiency are: the rotational speed is 123rpm, 

and the ROP value is 1.58m/h (corresponding to the first 

group of experiments in Table 1); the rotational speed is 123 

rpm, and the ROP value is 5.64 m/h (corresponding to the 

fifth group of experiments in Table 1); the rotational speed is 

220rpm, and the ROP value is 5.37 m/h (corresponding to the 

tenth group of experiments in Table 1). To more intuitively 

express the optimal parameter combination under different 

energy parameters, a line graph as shown in Fig 3 is drawn.  

Fig. 2. Experimental platform and equipment
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TABLE 1. Effect of drilling parameters on energy parameters 

Drilling 

depth (m) 

Rotating 

speed 

ROP value 

(m/h) 

Load 

power (w) 

Cutting rock 

power(w) 

Time 

(s) 

EC for cutting 

rock (kJ) 

Load 

EC (kJ) 

Efficiency 

(%) 

0.1 123 1.58 3609.83 683.83 228.38 156.17 824.40 18.94 

0.1 123 2.49 3772.30 846.30 144.76 122.51 546.08 22.43 

0.1 123 3.77 4035.70 1109.70 95.51 105.99 385.46 27.50 

0.1 123 4.58 4166.19 1240.19 78.69 97.59 327.83 29.77 

0.1 123 5.64 4563.12 1637.12 63.85 104.53 291.36 35.88 

0.1 220 1.50 3865.60 844.60 240.00 202.70 927.74 21.85 

0.1 220 2.49 4171.80 1150.80 144.79 166.62 604.02 27.59 

0.1 220 3.46 4355.56 1334.56 104.07 138.89 453.30 30.64 

0.1 220 4.36 4606.76 1585.76 82.52 130.85 380.14 34.42 

0.1 220 5.37 4786.38 1765.38 67.05 118.36 320.91 36.88 

Fig. 3. Energy parameter values under different parameter combinations   

To verify the superiority of the hybrid model in 

predicting EC, 30 groups of random experiments were 

carried out with the variables of rotational speed and ROP. 

Among them, the mechanism model is obtained by fitting the 

experimental data; the nonlinear mapping relationship in the 

data-driven model is obtained through the LSSVM model, 

where the number of whales is 15 and the maximum number 

of iterations is 25. Next, the mechanism model, the data-

driven model, and the hybrid model are used to predict and 

analyze the EC under the 30 sets of parameter combinations, 

and some of the prediction results and their errors are shown 

in Table 2.   

TABLE 2.  Comparison of predicted values of various models 

number 
Rotating 

speed 

ROP 

value 

(m/h) 

EC(kJ) Error (%) 

Actual 

value 

Mechanism 

model 

Data 

model 

Hybrid 

model 

Mechanism 

model 

Data 

model 

Hybrid 

model 

1 123 1.35 970.88 937.16 868.82 959.38 3.47 10.51 1.18 

2 123 1.51 868.82 846.60 825.05 862.18 2.56 5.04 0.76 

3 123 1.59 825.05 809.46 868.82 831.69 1.89 5.31 0.80 

4 123 2.24 596.36 599.17 680.45 600.30 0.47 14.10 0.66 

5 123 3.65 394.44 398.55 377.03 396.89 1.04 4.41 0.62 

6 123 3.89 377.03 378.70 394.44 374.35 0.44 4.62 0.71 

7 123 4.11 358.52 362.87 377.03 361.21 1.21 5.16 0.75 

8 123 4.73 325.50 325.84 304.26 321.49 0.10 6.53 1.23 

9 123 4.88 304.26 318.15 325.50 317.81 4.57 6.98 4.45 

10 123 5.64 291.36 286.47 304.26 272.58 1.68 4.43 6.45 

…... 

21 220 3.69 436.20 430.95 431.87 434.63 1.20 0.99 0.36 

22 220 3.72 431.87 428.19 436.20 433.44 0.85 1.00 0.36 
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23 220 3.85  417.64  416.27  431.87  419.95  0.33  3.41  0.55  

24 220 4.17  394.32  391.40  382.23  392.77  0.74  3.07  0.39  

25 220 4.18  382.23  390.27  394.32  391.64  2.10  3.16  2.46  

26 220 4.27  380.33  383.77  382.23  375.73  0.90  0.50  1.21  

27 220 4.57  368.26  364.42  380.33  363.83  1.04  3.28  1.20  

28 220 4.95  342.46  343.05  326.21  341.06  0.17  4.75  0.41  

29 220 5.25  326.21  328.21  315.83  326.38  0.61  3.18  0.05  

30 220 5.49  315.83  317.66  326.21  315.66  0.58  3.29  0.05  

To more intuitively display the EC prediction results of 

each model, the EC prediction line graph shown in Fig 4 and 

the error histogram shown in Fig 5 are drawn. It is observed 

that, compared with the mechanism model and the data-

driven prediction model, the EC prediction value of the 

hybrid model is closer to the real value. Fig 5 shows that the 

prediction results of the data-driven model have the largest 

error relative to the actual value. The average relative errors 

of the EC mechanism model, the data-driven model, and the 

actual value are 1.96% and 4.59%, respectively. Compared 

with this, the average error of the EC prediction accuracy of 

the proposed hybrid model is 1.69%, which is reduced by 

0.27% and 2.9%, respectively. The above results show that 

the data error compensation model based on LSSVM makes 

up for the deficiency of the mechanism model in predicting 

EC and improves the prediction accuracy. Therefore, the 

hybrid model can reflect the EC characteristics of the drilling 

rig to some extent.    

 

Fig. 4. Comparison results of different EC prediction models 

 

       Fig. 5. EC prediction errors of different models 

Ⅳ.CONCLUSION 

In this paper, a comprehensive load EC prediction method 

combining data modeling and mechanism analysis is 

proposed. The feasibility and practicability of the model are 

verified by drilling tests. The following conclusions are 

drawn: 

(1)The average error between the EC prediction results of 

the hybrid model and the actual results is only 1.69% when 

the artificial rock is drilled and cored. Compared with the 

prediction results of the mechanism model and the data-

driven model, the average prediction error is reduced by 0.27% 

and 2.9%, which verifies the high efficiency of the hybrid-

driven model.  

(2)On the premise of meeting the drilling requirements, 

with the increase of the ROP value, the EC of drilling and 

coring is significantly reduced, because the drilling time is 

shortened with the increase of the ROP value. Therefore, by 

adjusting the working parameters of the drilling rig, the 

drilling energy efficiency can be effectively improved and 

the EC can be reduced. 

(3)The method integrates data and mechanism models, 

and is suitable for other drilling rigs in the field of drilling 

and excavation. In addition, to achieve energy saving and 

emission reduction of drilling rigs, while improving the 
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accuracy and speed of the algorithm, the hybrid drive method 

is used to predict drilling EC.   
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