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Abstract— Increasing shares of renewables in the energy 
matrix is linked to increased power price fluctuations, which, in turn, 
increases the financial risks for electricity market participants.  In 
this context, understanding the key factors driving the power prices 
and thereby improving price forecasts is increasingly important. 
Here we analyze the main drivers of power prices with the help of 
machine learning. We show how the selection of the predictors set 
and length of historical data affect the forecast accuracy of the power 
prices. Using the developed model, we project how high energy and 
carbon prices may affect future electricity prices.  

Keywords—Electricity Price Forecasting, Machine 
Learning, Feature Selection, Day-Ahead Market 

I. INTRODUCTION

A. Motivation 
In the transition to a carbon-neutral future, rapid 

decarbonization of the power sector— the largest emitter of 
greenhouse gases globally [1], is of great importance. State 
policies supporting the deployment of renewable energy 
sources (RES), accompanied by sharp reductions in 
production costs, have helped to grow the share of RES in the 
power generation mix in many countries worldwide. In 
Germany, for example, the RES share in the gross electricity 
output has surpassed 40% in 2021, doubling over the past 
decade [2]. However, the growth in the share of RES has been 
linked to increased power price fluctuations [3]–[7], posing 
higher financial risks for electricity market participants. 
Specifically, the price fluctuations affect the cost and 
attractiveness of investing in non-RES power generation, 
raising further concerns regarding the reliability [7] and 
affordability of electricity in the long run. The relationship 
between the power prices and RES generation is complex and 
changes over time in a non-trivial manner. In this context, 
understanding what drives the power prices and how the 
prices may change in the future is critical for navigating the 
power sector decarbonization. 

In recent years, Electricity Price Forecasting (EPF) has 
become a popular area of research. Traditionally, EPF has 
relied on econometrics and statistical methods, but data 
availability and advances in computational capabilities have 
allowed machine-learning (ML) and deep learning (DL) 
methods to dominate the field since the mid-2010s [8]. 
Despite the numerous studies on EPF, there is still no 
consensus on what determines the electricity price dynamics. 
The machine learning approaches to EPF compete in the 
dimensionality of their databases but offer limited insight into 

how important the inclusion of additional variables in the 
analysis is. Targeting energy traders, existing models 
primarily focus on (ultra) short-term prices comparing the 
accuracy of hourly, weekly, or monthly predictions using tens 
(or often hundreds) of variables. The reported results, 
however, leave open questions regarding the accuracy of 
longer-term predictions and the predictability of prices with a 
smaller set of variables. The answers to those questions are 
essential to inform and support the decisions of energy users 
and regulators amid the ongoing energy transition.  

The objectives of this study are three-fold: 
(i) to use an ML approach to identify the key drivers of 

the electricity prices in the German day-ahead (DA) power 
market, selecting out of 80 relevant variables, including 
features highlighting the role of RES; 

(ii) to analyze how the length of time series and the 
distance between the last data point and the predicted outcome 
may affect the accuracy of the predictions, emphasizing the 
role of the power sector transformation;  
 (iii) to demonstrate how the EPF model may be used for 
normative analysis to make projections on how the future 
fossil fuel and carbon price changes may affect the 
affordability of electricity.  

For our analysis, we select a set of ML algorithms and ML-
based procedures that (1) help discern the macro-behaviors 
and sub-patterns within the system and (2) allow for 
interpretability of the results to provide useful economic 
insights. The proposed methodology includes the steps in 
training set selection, key feature identification, model 
optimization, and prediction error quantification. To this end, 
we employ a variety of tree-based models, including random 
forest, gradient boosted trees and Bayesian additive regression 
trees. 

Starting with a set of 80 variables characterizing the 
German DA electricity market, we perform feature selection 
to rank the predictors and pinpoint the key drivers of the power 
prices. We examine how the choice of the predictor set affects 
the model performance. In addition, we test for historical and 
sample biases. Finally, we build an ensemble model with the 
selected feature set to develop power price projections for 
several future scenarios with varying assumptions on the input 
energy and carbon price developments. 



B. Literature Review 
The research on EPF and ML methods is vast and fast 

evolving. The literature can be categorized along several 
dimensions, including the modeling approach, the time 
horizon of the predictions, the time granularity of the models, 
and the energy markets analyzed. [10] and [11] provide 
excellent reviews of relevant studies prior to 2014, while [12] 
and [8] summarize and compare the recent developments 
focusing on ML-based techniques. Despite the advances 
offered, we identify some gaps, which our study tries to 
address.  

In contrast to traditional data-poor economic simulations, 
few data-driven works provide long-term price forecasting 
with a horizon of 1 year or longer. Ziel et al. provide a 
comprehensive list of published research on mid- and long-
term EPF up to 2017 [13]. The studies with a longer prediction 
horizon commonly generate estimations on an annual basis. In 
contrast, novel ML-based approaches allow and are used to 
perform the predictions with hourly and daily granularity. The 
added price details are especially useful when analyzing the 
impact of RES generation, which varies dramatically 
throughout the year with the weather patterns.  

Mid- and long-term price forecasting studies with lower 
levels of granularity include the works of [14]–[19], who 
investigate the daily average prices, [20]–[23] with the focus 
on the monthly average price, and [9], [24], [25] who study 
the yearly-average prices. Finally, research on the electricity 
price drivers, the effect of RES adoption, and changes in 
energy and carbon prices traditionally relies on structural 
models [3], [26]–[29], missing insights and granularity 
offered by ML-based methods.  

C. Contribution 
In the context of the above discussion, the present work 

makes several contributions to the previous EPF studies: 
1) Analyzing the power price dynamics, we rank the 

explanatory variables to identify the top predictors, 
including but not limited to the market fundamentals. 
Hence, we help link the results of structural and machine 
learning-based models. Furthermore, by introducing 
synthetic features, we capture and analyze interaction 
effects, such as the interplay between fuel and carbon 
prices. 
Overcoming the weaknesses of previous studies, we pay 
special attention to multicollinearity in our feature 
selection analysis [31]–[33]. We test the recursive feature 
elimination (RFE) technique [34]–[36] and the VSURF 
algorithm developed by Genuer et al. [32]. The latter, to 
our best knowledge, has not been previously applied in 
EPF.  
Selecting the power price determinants, we explore the 
effect of a smaller set of predictors on the prediction 
accuracy. The results of this analysis are especially 
relevant for those who may not have the resources for an 
extensive database and have to rely on a limited set of 
input features. Following the recent attempts to make ML 
more explainable, we report metrics such as SHAP, in 
addition to the feature importance scores.  

2) Focusing on possible biases in the historical data, we 
present a procedure to evaluate the effect of training 
window size on model performance. We show how the 

model choice and the resulting errors may vary depending 
on the training data sample.  

3) Finally, developing an EPF model, we demonstrate how 
ML-based methods can benefit normative analyses. We 
create different scenarios to study how different fuel or 
carbon policies may affect power prices. Existing works 
with a similar focus rely on structural or econometrics-
based methods, limited in the number of input variables 
included and/or ability to handle trend changes and 
structural breaks. In contrast, ML models overcome those 
challenges and present a more robust and insightful tool 
for policy analysis. 

D. Paper Structure  
The remainder of the paper is structured as follows. 

Section 2 introduces the dataset, including the original data 
and the engineered features, and exploratory data analysis. 
Section 3 introduces the methodology discussing the models 
and tests used. Section 4 presents the results, including the 
findings of the feature selection analysis, the effects of the 
calibration window size on predictive performance, and an 
overview of the relevant accuracy metrics. Section 4C reports 
the scenario analysis outcome. We provide the conclusions 
and summary of our work in Section 5. 

II. DATA 
In line with the primary goal of our research, we collect 80 

variables capturing the recent developments in the German 
DA power market from January 2015 to October 2021. Our 
power market choice is motivated by the larger volume of RE 
traded on the DA market [37] and the role of DA prices as 
reference point in energy trading [38]. We include variables 
such as the electricity prices of Germany and neighboring 
countries, daily values and day-ahead forecasts of total load 
and the infeed from wind and solar generation.  

As prices are determined by the supply composition, we 
add electricity generation per plant type and imports and 
exports from neighboring countries to the database. Since 
~60% of the gross power output is provided by non-RES 
generation, namely by fossil fuels, we include coal API2 and 
natural gas TTF prices. To account for the role of carbon 
regulations, we use the EUA carbon prices. In addition to the 
listed, we introduce two synthetic variables, namely coal and 
natural gas “clean prices” to capture the interactive effects of 
carbon prices with fossil fuel prices. The clean price is 
calculated based on the underlying fuel price plus an 
additional mark-up corresponding to the associated carbon 
costs resulting from the use of the fuel in power generation 
[39]. 

Apart from the cost drivers, we include other determinants 
of the power prices such as weather and other non-economic 
variables. These include temperature, humidity, dew point, 
wind speed, and global irradiance factor, as well as variables 
representing holidays, weekends, days of the week, and 
seasons. All explanatory features, except for the day-ahead 
forecasts, are lagged by one day to reflect the information that 
is available to the market participants in predicting the day-
ahead power prices.  

We analyze the compiled dataset by looking at the 
correlations between the variables and the DA power price 
(Fig. 1a). The constructed correlation matrix reveals a high 
correlation between some explanatory features, as marked by  



the dark blue and yellow colors. The observed correlations are 
found to change over time. Figs. 1b-d illustrate the changes in 
the correlations between the day-ahead price and four 
explanatory variables over three time periods, highlighting the 
importance of moving beyond a simple correlation (or 
regression) analysis to more sophisticated approaches that can 
adequately capture, explain, and project the power market 
behavior. 

III. METHODOLOGY  
Following the previous studies, we select three distinct 

tree-based ML models for (1) their ability to capture non- 
linear behavior, without the need for input data 
transformation, and (2) the ease of interpretability. The used 
techniques include random forest (RF), extreme gradient 
boosted trees (XGBoost) and Bayesian additive regression 
trees (BART). We compare several feature selection 
techniques to rank the input features according to their role in 
model performance. We apply “VSURF interpret”, “VSURF 
predict” [32], and recursive feature elimination (RFE) with 
cross-validation as proposed by [34]–[36] to RF. The latter is 
also used for XGBoost. For BART, we select RFE with 
replication. These procedures allow to account for possible 
biases stemming from the strong correlation of the input 
features [31]–[33]. 

Having ranked the input features, we reapply our models 
to the reduced set of variables, assessing the accuracy of 
predictions for each test year in  2016-2021. In total, we test 
11 models that vary with regard to the input feature set and the 

utilized algorithm. For each test year, information from the 
previous years is used in EPF for the entire next year. To 
control for possible historical biases stemming from the 
significant changes in the energy sector, we also examine the 
effect of the model calibration window. Further details on the 
methodology are provided in the supplementary material.  

Inspired by [12], we create an ensemble model consisting 
of the output from several of the 11 developed models and 
compare the predictive performance against the base models.  
Finally, we use the ensemble model for the normative analysis 
projecting how the power prices react to the changes in input 
energy and carbon prices. 

IV. RESULTS  

A. Feature Selection and the Drivers of Power Prices 
We start the reporting of our results with the feature selection 
analysis. The findings strongly support the conclusion that 
the top 5 drivers of the electricity prices in Germany during 
the analyzed period are energy input prices corrected for 
carbon and the demand unsatisfied by renewable generation 
(Table I). The different selection techniques show how the 
ranking of these variables concerning their importance may 
be different, but that the members of the list stay the same. 
Beyond the top 5 variables, the selection techniques agree on 
> 60% of the top 15 features and > 68% of the selected top 
50 features. The complete list of the variable rankings is 
found in the supplementary material.  

TABLE I.  THE IDENTIFIED TOP DRIVERS OF POWER PRICES IN GERMANY USING DIFFERENT FEATURE SELECTION TECHNIQUES 

 RFE with RF VSURF Interpret with RF VSURF Predict with RF RFE with BART RFE with XGBOOST 

1 
Coal clean price 
(day-before) 

Coal clean price 
(day-before) 

Coal clean price 
(day-before) 

NG clean price 
(day-before) 

Coal clean price 
(day-before) 

2 EUA carbon price (day-
before) 

Forecast residual load 
(day of) 

Forecast residual load 
(day of) 

Forecast residual load 
(day of) 

Forecast residual load 
(day of) 

3 Forecast residual load 
(day of) 

NG clean price 
(day-before) 

NG clean price 
(day-before) 

EUA carbon price 
(day-before) 

EUA carbon price 
(day-before) 

4 Coal price  
(day-before) 

Coal price 
(day-before) 

 Coal price 
(day-before) 

NG clean price 
(day-before) 

5 NG clean price 
(day-before) 

EUA carbon price 
(day-before) 

 Coal clean price 
(day-before) 

NG price 
(day-before) 

(c) 

 
 

 

x1 = day-ahead prices  x2 = Coal API2 prices x3 = EUA prices 
 x4 = forecast residual load x5 = Natural gas prices

 
 

 
      

    
 

(a) (b) (d) (c) 

Fig. 1. Pearson’s correlation matrix for the employed dataset. The input features exhibit a high level of multi-collinearity (a). The inter-correlation of the 
day-ahead power prices with four selected features evolves over the period of 2015-2017 (b), 2018-2020 (c) and 2020 (d) 



 The correlation analysis has already suggested that out of 
79 variables, only a smaller subset of features play a critical 
role in explaining the variance in the power prices. The 
results from “VSURF predict” and “VSURF interpret” 
appear to support this preliminary intuition. Although none 
of the variables can individually predict the power prices, 
“VSURF predict” suggests that the set of clean coal and 
natural gas prices together with forecasted residual load are 
sufficient for a good prediction of the power prices, while 
“VSURF interpret” indicates a selection of 12 features to 
fully capture and interpret the price dynamics.  

Apart from permutation-based variable importance scores, 
which measure the impact of the features on the prediction 
performance (e.g., the model RMSE score), we estimate 
Shapley values to determine the contributions of the 
individual variables to the model predictions. Averaging the 
marginal contribution of the features over the entire data set, 
we calculate the “global” SHAP feature importances [40] and 
show how the average feature contributions may align with 
the feature rankings, e.g., in the test year 2019 for the 
XGBoost model (Fig. 4). However, we prefer not to rely on 
the SHAP estimates because, as discussed by [41] and [42], 

these measures can be highly inaccurate for correlated feature 
sets  and thus may not be well-suited for evaluating feature 
importances. 

B. Predictive performance 
Next, we examine how the length of the historical period, 

model type, and the choice of explanatory features may affect 
the accuracy of the price predictions for each test year (Table 
II). While Table II ranks the models with regard to the root 
mean square error (RMSE), several additional error statistics 
are also reported. With the goal to construct an ensemble 
model with superior results, we test different combinations of 
the 11 base models. Except for 2018 and 2021, we find the 
ensemble model consisting of “VSURF predict”, BART, and 
XGBoost to outperform the base models in all test years. In 
2018 and 2021, Europe witnessed unprecedentedly high fossil 
fuel and power prices, well outside the range of the price 
distributions seen in the previous years (Fig. 3). Hence, we 
attribute the poorer prediction performance (as evident from 
the error statistics) in these years to the known weakness of 
ML algorithms: the inability to extrapolate. 

For the years 2016-2018, we find a shorter history of one 
year to result in better prediction performance, while for the 
later test years including a more extended history appears to 
be the most advantageous. This is especially the case for 2021, 
characterized by a broad density distribution, for which a data 
history from 2016 onwards is necessary.  

Regarding the choice of the explanatory features, the 
results suggest that selecting the top 15 variables for BART 
and XGBoost and the three input variables for “VSURF 
predict” would produce the optimal results. This requires a 
total of 19 variables from the original dataset, as the models' 
feature sets are different. Including more variables appears to 
worsen the prediction performance due to the issue of 
overfitting. 

C. Scenario Analysis 
Shifting our focus from positive to normative analysis, we 

use the developed models to investigate how a step shift in 
fossil fuel and/or carbon prices may affect the power prices 
throughout the year. Applying the ensemble models, we 
develop price projections (in contrast to predictions) by 
analyzing four scenarios in which we vary the prices of natural 
gas, coal, and carbon certificates, either individually or in 
combination, assigning to each the corresponding median 
value observed within the last three months in our database. 
Such an exercise allows us to see the DA power price reaction 
to an increase in the input prices over a 365-day horizon, with 

TABLE II. TEST STATISTICS OF THE TOP SELECTED MODEL FOR EACH OF THE PREDICTION YEARS 2016 TO 2021 

Year Actual Data Test Data 
Mean Standard Deviation Top Model RMSE MAE rMAE MAPE Optimum Calibration Window 

2016 28.98 9.65 Ensemble 5.12 3.66 0.70 0.31 1 year (2015) 

2017 34.20 14.00 Ensemble 6.46 3.79 0.47 0.13 1 year (2016) 

2018 44.47 14.31 BART_top15 8.96 6.81 0.84 0.20 1 year (2017) 

2019 37.67 11.85 Ensemble 4.91 3.58 0.48 0.23 2 years (2017 + 2018) 

2020 30.47 13.94 Ensemble 6.23 4.78 0.58 0.28 4 years (2016 to 2019) 

2021 74.81 38.44 VSURF Predict with RF 39.43 24.95 1.75 0.29 5 years (2016 to 2020) 

*RMSE = Root mean square error, MAE = Mean absolute error, rMAE = Relative mean absolute error, MAPE = Mean absolute percentage error 

        
Fig. 2. Predicted vs. actual power prices in 2019 
 
 

       
Fig. 3. Daily average power price distributions in years 2015-2021 



2019 as the benchmark year. keeping the original values for 
all the included variables, except those listed in the scenario 
details (Table III). We   

Based on the previous model and feature selection 
analyses, we use an ensemble of “VSURF predict” with RF 
and XGBoost and RF with their respective set of top 15 
features for the projections. In contrast to Section 4B, we do 
not include BART in the ensemble model for the scenario 
analyses due to the instability of its output, highly dependent 
on the initial seed.  
 We present the results for scenarios 1 and 3 (Fig. 6 and 7), 
leaving the complete set of results in the Appendix. 
Considering the increasing natural gas price in scenario 1, we 
estimate a positive shift in the power prices across all seasons, 
with the shape of the price distribution becoming visibly 
multi-modal. Fixing the value of one main feature at a time 
allows us to gain insights into how other variables’ behavior 
shapes the power price formation. In scenario 1, the power 
price distribution gains closer resemblance to the coal price 
distribution. The change in the price behavior appears more 
prominent in winter, showcasing the merit-order effect (Figs. 
6a and 6b). Contrary to expectation, we do not observe a vast 
price difference across the seasons, possibly due to the 
reliance on the gas-fired peaker plants used to complement the 
intermittent RES.   

 Repeating this exercise with the carbon prices instead of 
natural gas helps us highlight the effects on fossil-based 
generation, which is used more intensively during the winter. 
In scenario 3, we reveal the interaction between carbon and 
natural gas prices as both variables are simultaneously 
increased. The price effect, in this case, appears to be 
superadditive: the concurrent increase in both carbon and 
natural gas prices has a greater impact on increasing the power 
prices compared to the sum of the increases when only one 
price is raised (scenarios 1 and 2). Finally, in scenario 4, where 
the prices of coal, natural gas and carbon are increased 
simultaneously, we find that the power price distribution 
resembles the load profile, in line with intuition from 
structural power market models. Hence, we verify our 
findings concerning the top 5 variables, as we eliminate the 
factors one by one, moving from scenarios 1 to 4. 

V.  CONCLUSIONS 
In the context of the ongoing energy transition and the 

recent geopolitical developments, understanding the power 
price dynamics and the key price determinants is relevant not 
only for improving price forecasts but, more importantly, for 
addressing questions related to energy security and 
affordability. The presented work offers new insights into the 
power market behavior by analyzing the daily average prices 
in the day-ahead market in Germany.  

Using machine learning, we evaluate the ability to explain 
the day-ahead power prices with an extensive set of 79 
variables. We complement the analysis with various feature 
selection procedures to report the key drivers behind the 
power prices. Overcoming the weaknesses of previous 
studies, we pay special attention to possible biases in feature 
selection due to the high correlation of the input features.  

Linking to structural and econometrics models, we show 
that forecasted residual load and clean fossil fuel prices are the 
most important variables in driving the power price dynamics. 
Putting the above finding into practice, we project the power 
prices for individual years in 2016-2021.  

We examine and report the effects of the input feature set, 
model selection (RF, XGBoost, BART or an ensemble), and 
the length of historical data on the forecast accuracy. We find 
the ensemble model to outperform the other models in all test 
years except for 2018 and 2021. A calibration window size of 
one year appears to be sufficient for the earlier test years, but 
for the later years, particularly 2021, the entire historical 
information is useful for the most accurate price predictions. 
The high prediction errors in 2021 highlight the limitations of 

TABLE III. Scenario Design 
Case NG price 

(EUR/MWh) 
EUA price 
(EUR/EUA) 

Coal price 
(EUR/T) 

Other 
variables 

1 52 2019 levels 2019 levels 2019 levels 
2 2019 levels 59 2019 levels 2019 levels 
3 52 59 2019 levels 2019 levels 
4 52 59 141 2019 levels 

  
   Fig. 6. Results of scenario analysis no. 1. (a) Projected power prices across 
the seasons, (b) price increase relative to 2019  
 
  
 

 
Fig. 7. Results of scenario analysis no. 3. (a) Projected power prices across 
the seasons, (b) price increase relative to 2019  
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Fig. 4. Average feature contributions in 2019 for XGBoost model 
  

 
Fig. 5. Predicted vs. actual power prices in 2021 



ML methods in extrapolating beyond the observed range of 
values in the training set.  

Complementing our EPF with normative analysis, we 
report the insights from four different scenarios characterizing 
the effect of fossil fuel and carbon prices on the distribution of 
the power prices across the year. Contrary to expected, we do 
not detect a significant difference in the level of the price 
increase across the different seasons of the year in response to 
increasing fuel prices. We attribute this finding to the 
increasing reliance on peaking power plants supporting the 
increasing share of intermittent RES. Moreover, our results 
indicate that the effects of carbon and fossil-fuel prices may 
be superadditive. The simultaneous increase of carbon and 
fossil-fuel prices raises the power prices to a greater degree 
than when the input prices are increased individually.  

Future extensions of this work could include combining 
the ML methods with parametric models to overcome the 
issues related to extrapolation.  
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