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Abstract—Early warning is an important and challenging 
issue in governmental policy-making. This study proposes a 
skillful spillover network-based machine learning model to 
provide early warnings of critical transition in energy and 
stock markets. First, the critical transition of stock and 
energy time series can be detected using a hidden Markov 
model. Second, a dynamic spillover network is established, 
which can help to understand the characteristics of return 
volatility from the perspective of the time-varying structure 
of spillover relationships. A machine learning algorithm is 
employed to model the early warning of critical transition 
based on the topological structures of the network. The 
results demonstrated that the proposed model can identify 
the early warning of critical transition with the warning day, 
e.g., one day or thirty days, with a high generalization
ability. Our study enriches critical transition research and 
can offer important warning signals for policy-makers and 
market investors.  
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I. INTRODUCTION 

This paper investigates an important issue addressed in 
time series which is the detection of critical transitions, 
where the system shifts from one regime to another due to 
exogenous variables [1-3]. There are often system market 
crashes when critical transition occurs [2]. Numerous 
researchers and scholars have proposed various types of 
‘critical transition’ named regime switching methods in 
nonlinear time series analysis [4-7] and other general models 
for critical transitions in various natural and social systems[2, 
8, 9]. This theory extracts the fluctuation feature of time 
series to consider critical transition and rarely investigates 
the changeable structure of the relationships in time series. 
The time-varying structure of relationships across different 
series or sub time series can provide a large amount of 
important hidden time series information, which may provide 
early warning information for policy-makers and market 
investors to avoid financial crises. 

This paper proposes a skillful spillover network-based 
machine learning model named the SN-ML model to provide 
early warnings of critical transition in energy and stock 
markets, where the combination of complex networks and 
machine learning algorithms has become a new and hot 
method in data mining [10, 11]. There are two contributions 
of our research as follows: (1) We use a model for the 
detection of critical transition in financial time series based 
on an HMM [3, 7] (2) We establish a dynamic spillover 
network model to investigate the time-varying structure of 
the spillover across markets. Then, we study the nonlinear 
relationship between spillovers and critical transition using a 
machine learning tool. Our approach builds a platform for 
econometric models, complex networks and machine 
learning, which can provide early warnings of critical 
transition in financial markets. The model can help policy-
makers and investors minimize market losses appropriately. 

II. METHOD

In this section, we propose an early warning model 
named the SN-ML model, as shown in Fig. 1.  

First, we introduce the sliding time window method to 
transform the entire energy and stock time series into a high-
dimensional system that can describe the dynamic process of 
series. We use the sliding time windows to divide the whole 
time series from left to right with step.  

Second, we detect the critical transition of the high 

dimension data using an HMM model and entropy theory. 

We first measure the data heterogeneity from the role of 

space based on the spatial entropy [12] 

Third, thousands of spillover networks are established to 
characterize the time-varying structure of spillovers across 
markets based on GARCH-BEKK model [13]. Network 
indicators such as the network diameter, average path length 
(APL), network density, average out-strength (AOS), 
average normalized betweenness centrality (ABC) and 
average closeness centrality (ACC) are measure the 
topological structures.  
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Fourth, several machine learning algorithms such as 
support vector machine (SVM), gradient boosted decision 
tree (GBDT), artificial neural network (ANN) and deep 
neural network (DNN) [14]are established to predict and 
provide early warnings of critical transition.  

 

Fig. 1. The process of the SN-ML model 

III. RESULTS 

A. Data and preprocess 

The data in this paper are taken at daily frequencies from 

January 2007 to April 2020. Brent and WTI crude oil future 

prices and natural gas future prices. The seven main stock 

market indices chosen are the Shanghai Stock Exchange 

illustrates the dynamic network indicator of the stock and 

energy markets. For example, the dynamic average out-

strength of the stock and energy time series is presented in 

错误 !未找到引用源。  (d). The results show that the 

average importance of the financial market transmitting 

spillovers to other markets changes with time. During the 

global finance crisis, the average importance jumps from 

high to low and (SSE), FTSE 100, DAX, Nikkei 225, 

S&P/asx200 Index (SP Index), Singapore Straits Times 

Index (STI), and S&P 500. We select paper selects 220 days 

as the window width since the economic cycle is 

approximately one year to obtain a high-dimensional system 

consisting of thousands of sub time series. 

B.  Detection of critical transition 

Fig. 2 shows that the entropy of thousands of sub time 

series is time-varying. The results show that the 

heterogeneity of financial markets jumps from high to low 

during the global financial crisis (2007–2009) and European 

debit crisis I (2009–2010). During European debit crisis II 

(2011–2012), the heterogeneity begins with a lower value 

and then increases sharply. The global economy recovered 

between 2013 and 2014. From 2014 to 2016, more related 

oil and natural gas events occurred, oil prices collapsed, and 

the heterogeneity of financial markets fluctuated from lower 

value to higher value. During the China-US trade frictions 

and COVID-19, the heterogeneity fluctuates with a lower 

value. This suggests that the structure of financial markets 

as a whole becomes less complex and uncertain. This 

finding complements those of [13] who reported that the 

structure of financial markets as a whole is time-varying 

before 2017. 

 

 

Fig. 2. (a) Entropy of the high-dimensional system. (b) The state of the 
high-dimensional system. The white parts reflect the low states, and the 

purple parts reflect the high states. 

C. Dynamic structure of spillover networks 

Fig. 3illustrates the dynamic network indicator of the 

stock and energy markets. For example, the dynamic 

average out-strength of the stock and energy time series is 

presented in Fig. 3 (d). The results show that the average 

importance of the financial market transmitting spillovers to 

other markets changes with time. During the global finance 

crisis, the average importance jumps from high to low and 

then fluctuates at a higher value. From 2014 to 2016, the 

average importance begins with a lower value and then 

increases sharply, indicating that the importance of the 

financial market transmitting spillovers to others increases. 

The average importance fluctuates with a lower value during 

China-U.S. trade frictions and COVID-19. 

 

 

 

 

 



 

 

 

Fig. 3. (a) Dynamic diagram of the spillover network, (b) dynamic APL of 

the spillover network, (c) dynamic density of the spillover network, (d) 
dynamic AOS of the spillover network, (e) dynamic ABC of the spillover 

network, and (f) dynamic ACC of the spillover network. Note: The results 

are normalized network indicators, and the window is the last day of the 

sub time series in hing-dimensional system 

D. Early warning of the critical transition 

Step four of our study investigates the early warning of 

critical transition. First, we use the efficient information 

extracted from the spillover network structures with the time 

lag as the input variable and critical transition with the time 

lag as the output variable. Second, we build a dataset based 

on the input and output variables and then randomly select 

80% (20%) of the dataset as the training (testing) set. Third, 

we construct machine learning algorithms, such as the SVM, 

GBDT, ANN and DNN, to train the model and predict the 

data. Fourth, we calculate indicators such as the prediction 

accuracy, recall accuracy and F1-score to measure the 

generalization abilities of the proposed model. In addition, 

the generalization ability depends not only on the reliability 

of the dataset with the time lag but also on the selected 

machine learning algorithms. 

 

Fig. 4 (a) Prediction accuracies of the SVM on the training and testing 
sets, (b) prediction accuracies of the GBDT on the training and testing sets, 
(c) prediction accuracies of the ANN on the training and testing sets, and (d) 
prediction accuracies of the DNN on the training and testing sets. 

Fig. 4 presents the prediction accuracies of the four 
algorithms with different time lags. These results show that 
the prediction accuracies of the training and testing sets with 

the warning day in an algorithm are time-varying. For 
example, Fig.(a) illustrates the dynamic prediction accuracies 
of the SVM on the training and testing sets. The dynamic 
prediction accuracy of the SVM on the training set ranges 
from 0.7512 to 0.7813, and the prediction accuracy of the 
SVM on the testing set is between 0.6553 and 0.7814. As the 
time lag increases, the prediction accuracies of an algorithm 
fluctuate. The users can set the time lag according to the 
economic cycle and the actual situation. In addition, 
comparing the ranges of the prediction accuracies and their 
means for the four algorithms, our findings indicate that the 
GBDT and DNN have higher prediction accuracies than the 
others. 

 

Fig. 5 (a) Recall accuracies of training and testing sets in SVM, (b) 
recall accuracies of training and testing sets in GBDT, (c) recall accuracies 

of training and testing sets in ANN, (d) recall accuracies of training and 

testing sets in DNN.  
 

The recall accuracies of the four algorithms with 

different time lags are shown in Fig. 5. Our findings indicate 

that the recall accuracies of the algorithms on the training 

and testing sets with the warning day change with time. For 

example, Fig. 5 (b) presents the dynamic recall accuracies of 

the GBDT on the training and testing sets. The figure shows 

that the recall accuracies with different time lags are 

different, indicating that the recall accuracy on a dataset is 

time-varying. The dynamic recall accuracy on the training 

set ranges from 0.6243 to 0.7868, and the mean of these 

indicators is 0.7248. Comparing with the range of the recall 

accuracies of these four algorithms as a whole, the results 

show that the recall accuracies of the GBDT are better than 

those of the other three algorithms. 

Fig.6 shows the F1-scores in four algorithms with 

different the time lags. These results shows that F1-scores of 

training and testing sets with the day of warning in an 

algorithm change with time. For example, Fig. 6 (a) presents 

the dynamic F1-scores of training and testing sets in SVM. 

F1-score of training set belongs to (0.6811,0.7065). With the 

increase of the time lag, the F1-score in an algorithm 

fluctuate. The users can take the time lag according to 

economy cycle and the actual situation. In addition, 

compared with the ranges of the F1-scores and their mean in 

four algorithms, our findings indicates that the GBDT and 

DNN have greater average F1-scores of training set, and 



 

 

GBDT and ANN have greater average F1-scores of testing 

set. Above all, GBDT has greatest F1-scores of samples.  

 

Fig. 6 (a) F1-scores of training and testing sets in SVM, (b) F1-scores 
of training and testing sets in GBDT, (c) F1-scores of training and testing 
sets in ANN, (d) F1-scores of training and testing sets in DNN 

Overall, the prediction accuracies, recall accuracies and 
F1-scores of the training set and testing set are time-varying. 
First, compared with the SVM, GBDT, ANN and DNN 
models as a whole, the GBDT and DNN have better 
generalization abilities. This may be because the GBDT is a 
well-known two-class classifier and the DNN has a good 
deep learning algorithm structure. Second, due to the 
dynamic time lag, policy-makers and market investors 
choose machine learning algorithms that have a better 
generalization ability at that time lag to make predictions. 

IV. CONCLUSION AND POLICY IMPLICATION 

This paper proposes a spillover network-based machine 
learning model for the early warning of critical transition in 
energy and stockmarkets. We first establish an HMM model 
to identify critical transition in a high-dimensional system 
reconstructed from energy and stocktime series. Then, 
thousands of spillover networks are established to describe 
the dynamic process of spillovers across markets, which can 
help to deeply understand return volatility. Machine learning 
algorithms including the SVM, GBDT, ANN and DNN are 
employed to model the early warning of critical transition 
based on spillover networks. Our findings can be described 
as follows: 

First, we can identify critical transition with two states by 
analyzing the time-varying heterogeneity of time series. By 
analyzing the time-varying structure of the spillovers across 
energy and stock markets, we provide new evidence for the 
structure of spillovers across these markets during China-US 
trade frictions and COVID-19. Second, our proposed SN-ML 
model can provide an early warning of critical transition with 
a warning day from one day to thirty days with a high 
generalization ability. Comparing with the generalization 
abilities of the four learning algorithms, the GBDT and DNN 
perform significantly better than the other machine learning 
models. 

Our findings provide a dynamic process orientation to 
explore the early warning of critical transition in energy and 
stocktime series for policy-makers and market investors. 
Therefore, policy-makers can have a deeper understanding of 

the dynamic process of spillovers across energy and stock 
markets and can use a dynamic early warning model of 
critical transition to foster market stability. The early 
warning of critical transition using dynamic graphical tools 
can provide a clear time-varying structure for market 
investors to avoid market losses. 

This paper only establishes the early warning of critical 
transition in energy and stock time series based on a spillover 
network, an HMM model and four typical machine learning 
algorithms. Future research could investigate the other co-
movement relationships across many more energy and stock 
markets, such as bulk mineral communities. Other 
econometric models and machine learning algorithms, such 
as convolutional neural networks, could be used to explore 
the early warning of critical transition in the future. 
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