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Abstract—This paper proposes an intelligent battery 

health-aware energy management strategy (EMS) for the 

hybrid electric bus (HEB) with a deep reinforcement learning 

(DRL) method. Firstly, an EMS based on twin delayed deep 

deterministic policy gradient (TD3) algorithm considering 

battery health is innovatively designed to minimize the total 

operating cost of the HEB. Secondly, the superiority of the 

proposed EMS over the state-of-the-art deep deterministic 

policy gradient (DDPG) based strategy is validated. 

Simulation results show that the proposed EMS accelerates 

the convergence by 24.00% and reduces the total operating 

cost by 9.58% compared with the EMS based on DDPG. 
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I. INTRODUCTION 

Being famous for long-range and low-emission, hybrid 
electric buses (HEBs) equipped with appropriate energy 
management strategies (EMSs) provide a popular solution for 
the new requirements of electrification and decarbonization of 
the urban public transport [1]. EMSs have been studied in a 
large number of research works and can be generally classified 
into three categories including rule-based strategies [2], 
optimization-based strategies [3], and reinforcement learning-
based strategies [4]. 

Rule-based strategies mainly include logic threshold 
strategy and fuzzy logic strategy, having low computation cost 
and strong practicability [5]. However, the designed control 
rules are extracted from engineering intuition, making it far 
away from satisfactory control performance. Optimization-
based strategies consist of global optimization strategies such 
as dynamic programming (DP) and real-time optimization 
strategies such as model predictive control (MPC) and 
equivalent consumption minimization strategy (ECMS), 
which can obtain the global optimal or near-optimal control 
performance [6]. Nevertheless, the model-based attribute 
hinders further improvement of the optimization effect. 

More recently, reinforcement learning (RL) especially 
deep reinforcement learning (DRL) has attracted a lot of 
research attention owing to its model-free attribute and great 

adaptability [7]. From Q-learning to deep deterministic policy 
gradient (DDPG), energy management for HEBs based on 
DRL has become a research hotspot in recent years [8]. 
However, there are still three major deficiencies waiting for 
further overcoming: 

1) Most of the research on energy management for HEBs
is based on standard driving cycles, which is unfavorable to 
improving the fuel economy of HEBs operating on fixed bus 
routes. 

2) Most of the research works focusing on DRL-based
EMSs tend to optimize the fuel economy unilaterally. Since 
the replacement of the battery system costs a lot, it is vital to 
take the battery's health into account. 

3) Although DDPG is the state-of-the-art DRL algorithm
for energy management, it still suffers from several inherent 
defects. The designing of more intelligent EMSs requires 
more advanced DRL algorithms. 

To bridge the aforementioned research gaps, this paper 
proposes a DRL-based and battery health-aware EMS for an 
urban power-split HEB. This paper encompasses three 
perspectives that may contribute to relevant research: 

1) The real-world velocity data are used as the training and
testing datasets for the DRL agent to evaluate the practical 
operating costs of the HEB accurately. 

2) Twin delayed deep deterministic policy gradient (TD3)
is used as a more efficient DRL method to further explore the 
energy conservation potential of the DRL-based EMSs. 

3) The degradation of the onboard battery system is
especially considered with precise modeling in the form of 
second-order RC. 

To the best of our knowledge, this is a pioneer research 
work to adopt the TD3 algorithm for energy management of 
the urban HEB with special awareness of battery health. 

The remainder of this paper is organized as follows. The 
powertrain modeling of the power-split HEB with a detailed 
battery aging model is presented in Section 2. In Section 3, a 
TD3-based EMS to deal with the optimization problem is 
formulated. Simulation results are analyzed in Section 4. 
Finally, Section 5 draws major conclusions. 



II. POWERTRAIN MODELING 

A. HEB Configuration 

The adopted HEB powertrain is a power-split 
configuration, which is shown in Fig.1. The power-split 
device is composed of a dual planetary gear set. The detailed 
description and main parameters of the configuration can refer 
to our previous research [9]. 

 

Fig. 1. Powertrain configuration. 

B. Vehicle Dynamics Modeling 

The backward vehicle simulation model is adopted to 
simplify the calculation, and the driving force demand can be 
calculated as [10]: 
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where Ft is the driving force demand, m is the vehicle mass, g 
is the gravity acceleration, f is the rolling resistance coefficient, 
φ is the angle of road slope, Cd is the drag coefficient, A is the 
front area, v is the velocity, δ is the rotational mass coefficient. 

The coupling relationship brought by the power-split 
device can be formulated as: 
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where Teng, Tmg1, Tmg2 are the torque of the engine, MG1, and 
MG2. ωeng, ωmg1, ωmg2 are the rotational speed. Tout is the 
output torque of the power-split device. k1 and k2 are the gear 
ratio of the ring gear to the sun gear of PG1 and PG2 
respectively. Rwh and if are the rolling radius and final gear 
ratio respectively. 

C. Power Components Modeling 

The diesel engine, MG1, and MG2 are modeled in the 
form of quasi-static models. Since the efficiency of MG1 and 
MG2 are quite higher than that of the diesel engine, the 
optimization work is mainly carried out for the engine in the 
HEB, only the efficiency map of the engine is displayed in this 
paper, which is shown in Fig. 2. 

 

Fig. 2. Engine efficiency map. 

D. Battery Aging Modeling 

The second-order RC model shown in Fig. 3 is adopted in 
this paper. The governing equations are formulated as [11]: 

 

Fig. 3. Second-order RC model. 

 
( ) ( )d

d 3600 bat

SOC t I t

t Q
= −  () 

 
( ) ( )

( ) ( )

( )

( )
1 1

1 1 1

d

d

V t V t I t

t R t C t C t
= − +  () 

 
( ) ( )

( ) ( )

( )

( )
2 2

2 2 2

d

d

V t V t I t

t R t C t C t
= − +  () 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 0t ocV t V SOC V t V t R t I t= − − −  () 

where SOC is the state of charge of the battery, I is the battery 
current, Voc is the open-circuit voltage, Vt is the terminal 
voltage, Qbat is the battery capacity, R0 is the internal 
resistance, R1, R2, and C1, C2 are the equivalent resistance and 
capacitance of the two RC branches, V1 and V2 are the 
polarization voltage across the two RC branches. 

The ANR26650M1 battery is adopted and its related 
parameters have been identified and validated scientifically in 
[12]. The capacity loss can be estimated as [13]: 
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where ΔQ is the capacity loss, B is the pre-exponential factor 
which is listed in Table 2. c is the C-rate, Rg is the universal 
gas constant, Ta is the internal average temperature in the unit 
of ℃, Ah is the discharged ampere-hour throughput, z is the 
power-law factor, Ea is the activation energy. 
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The end-of-life (EOL) capacity loss of the onboard LIB is 
usually considered 20%, so the total discharged throughput 

𝐴ℎ(𝑐, 𝑇𝑎) and the total number of cycles 𝑁(𝑐, 𝑇𝑎) before 
EOL can be calculated as: 

 ( ) ( )
( )

( )

1

, 20 exp
273.15

z

a

a

g a

E c
Ah c T B c

R T

   −
 =      +    

 () 

 ( )
( )3600 ,

,
a

a

bat

Ah c T
N c T

Q
=  () 

The state-of-health (SOH) of the battery is defined as: 
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III. EMS BASED ON TD3 

A. Formulation of TD3 Algorithm 

The TD3 algorithm is derived from DDPG to effectively 
overcome several defects that DDPG suffers from, including 
overestimation, overfitting, and poor update [14]. Limited by 
pages, only the main differences between TD3 and DDPG are 
presented in this paper. 

Firstly, two critic networks 𝑄1(𝑠, 𝑎|𝜃
𝑄1)  and 

𝑄2(𝑠, 𝑎|𝜃
𝑄2)  are designed and each critic network 

corresponds to a target network 𝑄1
′(𝑠, 𝑎|𝜃𝑄1

′
)  and 

𝑄2
′ (𝑠, 𝑎|𝜃𝑄2

′
) respectively, thus two different action-values of 

the next state can be calculated: 
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Then clipped double Q-learning is adopted to eliminate the 
overestimation in DDPG: 
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Secondly, the clipped normal distribution noise is added to 
the output actions to eliminate the overfitting: 
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Thirdly, the updating frequency of the actor and target 
networks is reduced and their update can be completed only 
when the critic networks have been updated for a fixed 
number of steps. 

B. TD3-based EMS 

To comprehensively reflect the operating characteristic of 
the urban HEB, the state space is set to be composed of 
velocity, acceleration, battery SOC, and battery SOH: 

  , , ,S v acc SOC SOH=  () 

The action variable can be solely set as the engine output 
power: 

  0,140kWe eA P P =    () 

The optimization objective is to reduce the total operating 
cost including fuel consumption and battery aging, as well as 
to sustain the SOC within a certain optimal fluctuating range, 
hence the reward function can be designed as: 
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where �̇�𝑓𝑢𝑒𝑙  is the fuel consumption rate, ΔSOH is the battery 

degradation rate, 𝑆𝑂𝐶𝑡𝑎𝑟  is the SOC target value which is set 
to 0.5. 𝑤1 and 𝑤2 are the unit price of the diesel oil and the 
LIB replacement cost, which are set to 6.7 CNY/L and 1500 
CNY/kWh (Note: CNY means Chinese Yuan) respectively. ε 
is the weight factor of SOC sustaining. 

The optimization is subjective to the physical constraints 
of the powertrain system: 
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where the subscripts max and min represent the upper and 
lower bound of each physical quantity. 

Accordingly, the control framework of the TD3-based 
EMS is shown in Fig. 4. 

 

Fig. 4. Control framework of the TD3-based EMS. 

IV. RESULTS AND DISCUSSION 

A. Conditions of Validation 

In this paper, the real-world velocity data collected from a 
fixed bus route that the urban HEB operating on in Zhengzhou, 
China, is adopted as the training dataset for the proposed 
DRL-based EMS [15]. Moreover, a reconstructed driving 
cycle that reflects the driving characteristics and traffic 
scenarios of the test bus route is used as the testing dataset. 
The training dataset and testing dataset are shown in Fig. 5. 
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(a) Training dataset. 

 
(b) Testing dataset. 

Fig. 5. Training dataset and Testing dataset. 

In addition, the EMSs based on TD3 with and without the 
consideration of battery health are represented as TD3@FH 
and TD3@F respectively in the following. Similarly, two 
EMSs based on DDPG are represented as DDPG@FH and 
DDPG@F, respectively. 

B. Validation of Convergence Speed 

The mean reward of each training episode is a 
representative indicator to reflect the convergence process. 
The mean rewards of EMSs based on TD3 and DDPG are 
shown in Fig. 6. Since the reward function is set as the positive 
value, the mean reward close to zero means satisfactory 
convergence performance. It is shown in Fig. 6 that it takes 50 
episodes for the DDPG-based EMS to get the convergence, 
while it only takes 38 episodes for the EMS based on TD3. 
Benefiting from the delay updating mechanism for the actor-
network and target-networks in the TD3 algorithm, the 
convergence speed of the TD3-based EMS is improved by 
24.00% to that of the DDPG-based EMS. 

Besides, it also can be found in Fig. 6 that the mature mean 
reward of the EMS based on TD3 is obviously less than that 
of the DDPG-based EMS, demonstrating a better learning 
ability, which attributes to the fact that the usage of clipped 
double Q-learning and the adding of noise to target actions in 
the TD3 algorithm have eliminated the overestimating and 
overfitting in DDPG, thus achieving a quite satisfactory 
learning ability. 

 

Fig. 6. Comparison of mean rewards. 

C. Validation of Degradation Control 

The SOC of the battery system regarding different EMSs 
is shown in Fig. 7. It is shown that all SOC trajectories are 
maintained effectively within the range of 0.45 to 0.55. 

Besides, the SOC trajectories of EMSs considering battery 
health fluctuate within a comparatively narrower range than 
that of the EMSs neglect battery health, which is favorable for 
decreasing the degradation of the battery. 

 

Fig. 7. SOC trajectories of different EMSs. 

The SOH of the battery system regarding different EMSs 
is shown in Fig. 8. It is shown that the neglecting of battery 
health aggravates battery aging obviously, which can be 
explained that the current will be out of control to some extent 
when the battery health is overlooked. The proposed EMS 
achieves the best degradation control and reduces the 
degradation by 57.54% when battery health is considered. 
Moreover, although DDPG@FH considers battery health, its 
degradation control performance is 34.24% inferior to that of 
TD3@FH, due to the superior learning ability of TD3. 

 

Fig. 8. SOH trajectories of different EMSs. 

In this paper, the battery internal temperature is assumed 
to be constant under the assumption that the battery thermal 
management is well addressed. Therefore, the task of the 
degradation management is to control the C-rate. It is worth 
noting that the severity factor smaller than 4 is regarded as the 
healthy condition of the battery used in this paper, 
corresponding to the C-rate of 8.65. The distribution of the C-
rate when it is not zero regarding different EMSs is shown in 
Fig. 9.  It can be seen that the proposed EMS can ensure that 
the battery system works healthily. DDPG@FH could not 
make the battery completely works within the healthy region 
even though battery health is considered. 
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Fig. 9. Distribution of C-rate regarding different EMSs. 

D. Validation of Cost Optimization 

The fuel economy of different EMSs is compared in Fig. 
10. It can be seen that EMSs based on TD3 achieve better fuel 
economy than DDPG-based EMSs. More importantly, 
considering battery health causes extra fuel consumption. It 
can be explained that the battery degradation constraint item 
in the reward function attempts to protect the battery from 
being used abusively, therefore the fuel consumption will be 
increased accordingly to satisfy the driving power demand. 

 

Fig. 10. Comparison of fuel economy regarding different EMSs. 

The total operating costs of all EMSs under the testing 
dataset are listed in Table 1. The proposed EMS owns the 
minimum total cost among all EMSs. When considering 
battery health, the total costs have been reduced obviously 
with a slight sacrifice of fuel economy. The proposed EMS 
reduces the total cost by 8.06% in comparison with TD3@F, 
and the reduction proportion even reaches 9.58% to 
DDPG@F which is regarded as the most representative state-
of-the-art DRL-based EMS. 

TABLE I.  TOTAL OPERATING COSTS OF DIFFERENT EMSS 

EMSs 
Fuel cost 

(CNY) 

Aging cost 

(CNY) 

Total cost 

(CNY) 
Performance 

TD3@FH 21.67 1.82 23.49 100% 

TD3@F 21.23 4.32 25.55 91.94% 
DDPG@FH 22.04 2.77 24.81 94.68% 

DDPG@F 21.51 4.47 25.98 90.42% 

V. CONCLUSION 

This paper proposes a DRL-based and battery health-
aware energy management strategy for an urban HEB. TD3 is 
adopted as a more advanced DRL method to further explore 
the energy conservation potential of the HEB. Real-world 
velocity data collected from a fixed bus route is adopted as the 
training dataset for the DRL agents. The battery health is 
especially considered along with the fuel consumption. 
Simulation results show that the TD3-based strategy can 
accelerate the convergence speed by 24.00% in comparison 
with the EMS based on DDPG. Besides, when battery health 

is considered, the proposed strategy decreases the battery 
degradation by 57.54% compared with the battery health-
neglecting strategy based on TD3 with a 2.12% sacrifice in 
fuel economy. Moreover, the proposed strategy reduces the 
total operating cost by 9.58% in comparison with the existing 
state-of-the-art strategy based on DDPG. 
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