
Paper ID APEN-MIT-2022_7183 
Applied Energy Symposium: MIT A+B 

July 5-8, 2022 • Cambridge, USA 

 
 

Development of a Digital Twin Platform for 
Industrial Energy Systems 

 

Paul Schwarzmayr 
Institute of Energy Systems and Thermodynamics  

TU Wien  
Vienna, Austria 

https://orcid.org/0000-0003-4735-3447 

Lukas Kasper 
Institute of Energy Systems and Thermodynamics 

TU Wien 
Vienna, Austria 

https://orcid.org/0000-0001-9474-3021 

Felix Birkelbach 
Institute of Energy Systems and Thermodynamics 

TU Wien 
Vienna, Austria 

https://orcid.org/0000-0003-4928-6209 

René Hofmann 
Institute of Energy Systems and Thermodynamics 

TU Wien 
Vienna, Austria 

https://orcid.org/0000-0001-6580-4913 

 

Abstract—The reduction of waste heat in energy intensive 
industrial processes in combination with digital technologies 
will play a key role for the development and decarbonization 
of modern industrial energy systems. In the last few years, a 
significant share of the CO2 related to energy was emitted by 
the industry sector. Since industrial processes often are batch 
processes, waste heat recovery in these processes requires 
thermal energy storage systems for closing the temporal gap 
between energy supply and demand. The ongoing 
digitalization in the field of industrial energy systems enables 
modern applications like digital twins to increase the 
efficiency of energy intensive processes. This paper presents 
the implementation of a five-dimensional digital twin 
platform for a packed bed thermal energy storage test rig. The 
five-dimensional digital twin platform allows the 
development of services and applications in interdisciplinary 
teams and facilitates their interaction on a standardized 
platform. By that the digital twin helps to make modern 
industrial energy systems more efficient. 

Keywords—thermal energy storage, digital twin, packed 
bed, energy efficiency, waste heat recovery, decarbonization, 
industrial energy systems 

I. INTRODUCTION 

To curb global warming and to reach the goals defined in 
the Paris Agreement global CO2 emissions need to be reduced 
by more than 75% until the year 2050 [1]. A considerable 
share (more than 40%) of the CO2 emissions from energy in 
2019 were emitted by the industry sector [2]. Besides the 
transition to renewable energy systems, a reduction of primary 
energy consumption will be necessary. An important lever to 
reduce primary energy consumption is the management and 
recovery of waste heat. This can be very challenging because 
most industrial processes are batch processes where the 
availability of waste heat and the demand of process heat do 
not occur at the same time. Thermal energy storage 
technologies can increase flexibility and efficiency of 
industrial processes by matching heat supply with demand. 
The rapid development of digital technologies and the 

ubiquitous availability of data enables a multitude of new 
applications to increase utility, reliability, productivity, and 
sustainability of industrial energy systems. The concept of a 
digital twin (DT) is gaining in importance [3] and is 
considered a key technology to link specialized services such 
as predictive maintenance, fault detection and operational 
optimization in one uniform platform. A DT can provide a 
platform for services from different domains to interact with 
each other to make the most of their potential. 

A. Industrial use case – the Linz-Donawitz-process 

In this paper a steel producing process – the so-called Linz-
Donawitz (LD) process – at voestalpine Stahl Donawitz 
GmbH (VASD) in Leoben, Austria, will be taken as use case 
for the demonstration and evaluation of the examined 
technologies. As most industrial processes, the LD-process is 
a batch process with a cycle time of 30-60 minutes. During the 
first half of a cycle the LD-process produces large amounts of 
crucible gas. This hot crucible gas, which carries a 
considerable amount of abrasive and adhesive metal dust, 
exits the crucible with a temperature of about 1400 degrees 
Celsius. In a radiation heat exchanger, the crucible gas is 
cooled to around 700 degrees Celsius producing steam for 
other processes and electricity generation. For the exhaust gas 
purification, the process gas must have a maximum 
temperature of 150 degrees Celsius. Due to the high amount 
of metal dust in the crucible gas convective heat exchangers 
would erode quickly. Therefore, the further cooling is realized 
by injecting water in an evaporation cooler which results in a 
substantial amount of high temperature heat being wasted. 
During the second half of a cycle the crucible is emptied, and 
no exhaust gas is produced. To make the waste heat, which is 
produced in the first half of a cycle, reusable in other processes 
the evaporation cooler needs to be replaced with a thermal 
energy storage. The only type of thermal energy storage found 
to be suitable to store high temperature heat from LD-crucible 
gas is a packed bed thermal energy storage (PBTES). A 
PBTES is a sensible heat thermal energy storage which 
normally uses rocks as storage material. For a more detailed 
description of PBTES systems the authors refer to Esence et 
al. [4]. The main advantages of the PBTES for this specific 



use case are its robustness against the metal dust in the process 
gas and the high power rates. In this type of storage, the heat 
is directly transferred from the process gas to the storage 
material and vice versa. Hence there are no heat exchanger 
tubes that could be damaged. The high power rates are reached 
because of the large heat exchange surface of the packed bed. 

In Fig. 1 the integration of the PBTES into the LD-process 
at VASD is depicted. Instead of the evaporation cooler, which 
cools the process gas to about 150 degrees Celsius, a vertical 
PBTES is installed. Like the evaporation cooler the PBTES is 
capable of ensuring a maximum temperature of the exhaust 
gas and additionally enables the recovery of waste heat. 
During the first half of the LD-process’ cycle the process gas, 
which exits the radiation heat exchanger with temperatures 
around 700 degrees Celsius, flows through the packed bed 
from top to bottom and charges the PBTES. The storage can 
be discharged during the second half of a cycle with fresh air. 
This cold, fresh air flows through the PBTES from bottom to 
top and is heated up by the hot storage material. The hot gas 
which exits the PBTES during discharging can be used for 
preheating in other processes or for steam production. 

Fig. 1. Use case at voestalpine Stahl Donawitz GmbH 
 

Despite all these advantages, integrating a thermal energy 
storage into an existing process involves various challenges. 
An economically optimal and safe operation of the PBTES 
and a proper storage management are key. Due to the very 
harsh environment the PBTES will be operated in, the 
behavior and some properties of the storage will significantly 
change over time. Problems such as damaged sensors or a 
clogging of the packed bed will occur frequently and the 
adhesive metal dust in the process gas will lead to changing 
properties of the PBTES. To track these changes and detect or 
even predict errors we implemented a digital twin with 
specialized services for a PBTES test rig. 

II. MATERIAL AND METHODS 

A. Packed bed thermal energy storage test rig 

For experimental investigations a lab-scale test rig of a 
PBTES has been erected in the laboratory at TU Wien. As can 
be seen in Fig. 2, the test rig is a vertical PBTES, and its 
storage tank consists of a conical steel vessel. For the storage 
material LD-slag with a grain size of 16 – 32 millimeters was 
chosen. The LD-slag, which is a by-product of the LD-
process, consists of irregular shaped and porous rocks. These 
properties lead to high power rates, homogeneous and even 
perfusion of the packed bed and a high temperature 
stratification in the storage material. The test rig is connected 
to an air supply unit (ASU) which provides hot air with 
temperatures up to 400 degrees Celsius and a mass flow of 
max. 400 kilograms per second. Additionally, the test rig is 
equipped with several control valves that allow to simulate 
clogging of the packed bed and leaks in the air pipes. The most 
important facts and properties of the test rig and the storage 
material are summarized in TABLE I. 

TABLE I: Facts and properties of the lab-scale test rig 

Diameter of the conical storage 
vessel 

200 mm (bottom) / 500 mm 
(middle) / 700 mm (top) 

Height of the storage vessel 2050 mm 

Volume of the storage vessel 0.405 m³ 

Mass of the storage material 900 kg 

Type of storage material LD-slag (mostly calcium oxide) 

Grain size of storage material 16 – 32 mm 
 

To prepare the PBTES for the deployment as the physical 
entity in a digital twin, it is equipped with 49 PT100 
temperature sensors inside the packed bed and 8 PT100 
temperature sensors on the storage tanks surface. The exact 
position of these sensors inside the packed bed is shown in 
Fig. 2. This large number of sensors allows for a detailed 
measurement of the temperature field – especially the location 
and shape of the thermocline – inside the PBTES. 

Fig. 2. Packed bed regenerator test rig: insulated (left), uninsulated 
(middle), positions of temperature sensors (right) 

B. Digital twin platform for industrial energy systems 

The 5D digital twin platform proposed by Kasper et al. [5] 
builds the foundation for the modeling of the digital twin for 
the PBTES test rig. Kasper et al. designed their platform to be 
implemented for industrial energy systems and divided it into 
five dimensions (compare Fig. 3), following the 5D DT 
concept by Tao et al. [3].  

The only dimension located in the physical space is the 
physical entity. The physical entity can consist of one single 
aggregate or even a whole energy system. Programmable 
logic controllers and a supervisory control and data 
acquisition (SCADA) system form the interface of the 
physical entity into the virtual space and the rest of the digital 
twin. 

The counterpart of the physical entity in the virtual space 
is the virtual entity. The virtual entity should be able to 
represent the behavior and properties of the physical entity as 
accurately and timely as possible. It can generally consist of 
various types of models integrated and connected to the other 
dimensions of the digital twin via a model management layer.  

The central dimension of the 5D DT framework is the 
connection dimension. This dimension represents all the 
connections between the other four dimensions and is 
responsible for managing the communication and information 
flow inside the DT. 

The data dimension is the centralized storage of the data 
gathered from the physical entity and the virtual entity of the 



DT. The data dimension not only contains runtime data and 
simulation results in the form of relational databases, but also 
information about plant equipment, instrumentation and 
topology and other semantic information. 

The fifth dimension of the DT is the service dimension. Its 
purpose is to tightly integrate services that can make use of the 
data, information and models stored in the other four 
dimensions. In addition to all the application specific services 
which can be integrated into the service dimension the most 
important part of this dimension is a service orchestrator. The 
service orchestrator is responsible for the management and 
definition of workflows inside the digital twin, and it plays a 
key role in realizing the potential of digital twin services. 

III. IMPLEMENTATION 

The 5D DT platform applied to the evaluation case presented 
in Section II, the PBTES test rig, the 5D DT platform is 
visualized in Fig. 3.  
 

Fig. 3. 5D digital twin framework implemented for the PBTES test rig. 

Concept after [5] 

A. Physical entity 

The physical entity consists of the PBTES test rig which is 
equipped with 49 temperature sensors (see in Section II) to be 
able to monitor the temperature distribution in the packed bed. 
The SCADA system, which is a part of the physical entity, 
consists of XAMControl 1  and an open platform 
communications unified architecture (OPCUA) aggregation 
server. XAMControl is a software for process automation and 
in the presented digital twin, it is used for data acquisition and 
process control. XAMControl collects real time data from all 
the sensors of the PBTES test rig via OPCUA from the 
hardware PLCs, preprocesses them and hosts them to the OPC 
UA aggregation server again via OPC UA. The OPC UA 
aggregation server, which enables 100% OPC UA compatible 
communication and data exchange, acts as an interface 
between the physical and the virtual space of the DT by 
integrating data from the physical entity to the other four 
dimensions of the DT. 

B. Virtual entity 

The virtual entity, which is the counterpart of the physical 
entity in the virtual space, contains a three-dimensional 
thermal model of the PBTES test rig. This model utilizes the 
finite volume method and is based on the heat equation and 
other energy balances for modeling the losses and the energy 
in- and outputs during charging and discharging of the storage. 
To increase the flexibility of this model it is designed as a 
hybrid model and implemented in MATLAB®2. This means, 

 
1 https://en.evon-automation.com/ 

several parameters can be adapted and fitted via data-driven 
methods. Some examples of such adaptable parameters are the 
heat capacity of the storage material, the heat transfer 
coefficient between the packed bed and the process gas and 
the parameters that characterize the heat loss to the 
surrounding. In addition to the three-dimensional thermal 
model the virtual entity also includes soft sensors. These soft 
sensors are purely data-driven models which are modeled and 
trained on-demand based on runtime data and domain 
knowledge provided by the ontology. More details about soft 
sensors and ontologies are given later in this Section. 

C. Connection dimension 

The connection dimension, which can be seen as a central 
communication hub, is realized by a message queuing 
telemetry transport (MQTT) broker. We chose the open-
source MQTT broker Eclipse Mosquitto [6] for our 
implementation. MQTT is a topic-based publish-/subscribe 
network protocol that enables the transportation of messages 
and data between devices, or in our case the dimensions and 
services of the DT. Every MQTT message typically consists 
of a topic and a payload. The topic includes information about 
the message type (e.g., service name and request or response) 
and a unique identifier. Every dimension and service of the 
DT is connected to the MQTT broker as a client and can 
publish and/or subscribe to different topics. The MQTT 
broker is responsible for receiving, filtering, and sending 
messages to the subscribed clients. To allow subscribed clients 
the proper processing of received messages, every publishing 
client must follow a certain naming convention of the message 
payload. The payload typically contains data that the services 
need as input for their calculations. In the proposed DT 
framework, every service has a corresponding request topic to 
which it is subscribed and a corresponding response topic to 
which it publishes. The mapping of the topics to each other is 
done by a workflow engine, which will be described in more 
detail later in this Section. TABLE II shows the structure of 
MQTT message topic and payloads using the soft sensor 
service as an example. 

TABLE II: Request and response MQTT messages to and from the soft 

sensor service 

MQTT message to start the soft sensor service

message-topic 5dit/fbr/services/softsensor/request/#

payload “damagedsensor”: FBR-TE-4A1,

“faulttime”: 2022-07-05T12:34:56 

MQTT message from soft sensor service to continue the 
workflow 

message-topic 5dit/fbr/services/softsensor/response/#

payload empty
 

Every service-related topic starts with 5dit/fbr/service/, 
continues with the service name and ends with either 
/request/unique_identifier if it is a request topic or 
/response/unique_identifier if it is a response topic. The 
payload is predefined for each individual topic and can consist 
of multiple attribute-value pairs and arrays. 

2 https://de.mathworks.com/ 



Note: Since every topic starts with 5dit/fbr/services/ and 
ends with /unique_identifier we will just call them by 
servicename/request or servicename/response if they are 
mentioned in the text. 

D. Data dimension 

The “brain” of the DT and centralized storage location for 
runtime data and simulation results is called the data 
dimension. In the current status of the project, the data 
dimension consists of a PostgreSQL [7] relational database 
and two ontologies which can be accessed via a federated 
query endpoint called FedX [8]. FedX federates multiple 
SPARQL protocol and RDF query language (SPARQL) 
endpoints, which are the access points to information stored in 
different ontologies, under a single virtual endpoint. This 
allows users and services to access every information stored 
in any ontology inside the DT via one single endpoint. The 
relational database is used for the storage of runtime data from 
the physical entity and some important metrics such as the 
power rate or the state of charge (SOC), which are calculated 
from the runtime data. The ontologies are responsible for 
knowledge representation and for improving data accessibility 
inside the DT. To add context information and semantics to 
the runtime data in the relational database an existing 
ontology, the sensor, observation, sample, and actuator 
(SOSA) ontology [9], is reused and extended. To map the data 
in the relational database to the SOSA ontology the Ontop 
Framework [10] is utilized. Ontop represents the content of 
relational databases as virtual knowledge graphs without 
moving them to another database. Data from the relational 
database can therefore be accessed via ontology-based data 
access (OBDA). Based on the mappings in the ontology, 
Ontop translates SPARQL queries to structured query 
language (SQL) queries which are executed by the relational 
database. To add additional information about the location of 
sensors inside the packed bed relative to each other the SOSA 
ontology was extended specifically for the present use case. 
To do so, the storage volume is divided into nine horizontal 
planes and three radial sections (see Fig. 2). Every sensor is 
assigned to the plane and section it is located. This way 
context information such as the neighbors of a specific sensor 
can be extracted from the ontology. To provide and store 
information about sensor failures, a RDF4J [11] triple store 
which makes use of the existing owl-time ontology [12], is 
utilized. This ontology allows the documentation of error 
events as well as their start- and end time. If required by 
another user or service inside the DT this information can 
again be accessed by querying the federated query endpoint. 
Fig. 4 shows the structure of all the implemented ontologies 
combined in one graphic. The blue branch represents all the 
concepts which could be reused from the SOSA ontology. The 
extension of the SOSA ontology for the present use case can 
be seen in the green branch and the orange branch shows the 
structures and concepts which we reused from the owl-time 
ontology. 

To access the context information which is available in the 
ontologies, users and services need to send a SPARQL query 
to the endpoint of the federated query endpoint. 

Fig. 4. Structure of the ontologies 
 

An exemplary SPARQL query which aims to get 
information about which sensors are the nearest sensors (i.e., 
the neighbors in charging/discharging direction) to sensor 
FBR-TE-4A1 is presented in Fig. 5. 

Fig. 5. Exemplary SPARQL query to access context information 

(neighbor sensors) 

E. Service dimension 

As presented in Section II the service dimension is 
composed of several micro services and a service orchestrator. 
For the service orchestration a workflow engine called Zeebe 
[13] was chosen. Zeebe is an open-source workflow and 
decision engine that enables the execution of business process 
model and notation (BPMN) workflows. Via BPMN, 
workflows and business processes can be modeled in a 
graphical way and directly be loaded into a workflow engine. 
The main benefit of BPMN workflows for the development of 
a digital twin is that they provide a perfect interface for the 
cooperation of experts from different domains. 

In addition to the BPMN workflow engine, four services 
are implemented at the moment and relevant for the use case 
considered in this work: 

 The data acquisition service, which is responsible for 
data acquisition from the physical entity, 
preprocessing, and storage of the sensor data as well 
as context information in the data dimension.  

 The fault detection service, which is currently under 
development and responsible for the detection of 
deviation in the sensor data from the expected 
behavior. 

 The soft sensor service, which can react to messages 
from the fault detection service and automatically 
train data driven models to compensate for damaged 
sensors, called soft sensors. Soft sensors are trained 
based on runtime data as well as context information 
from the data dimension and can be used to 
reproduce measurement data that was corrupted by 
damaged sensors. 

 The sensor replacement service, which is an interface 
for the machine operator to document and integrate 
information about a replaced or repaired sensor into 
the ontology of the DT. 



IV. EVALUATION 

To highlight the benefits more clearly and to evaluate the 
proposed DT framework the interaction and communication 
inside the DT will be presented based on an exemplary 
scenario. For the prediction of the storage behavior and for a 
proper storage management, the SOC is an important 
characteristic number. Let us consider a scenario where a 
temperature sensor inside the PBTES gets damaged and 
delivers a constant value of zero degrees Celsius. Under 
normal conditions this failure might go undetected for a while 
and lead to a significant error in the SOC calculation. This 
error will propagate to other services and evaluations and 
make an economic operation of the storage impossible. In this 
Section we will present how the digital twin framework 
proposed in Section III can contribute to tackle and overcome 
these issues. Fig. 6 shows all the involved workflows notated 
as BPMN workflows and their communication via the 
ontology. The top box in Fig. 6 represents the ontology, which 
is not part of BPMN, but is included regardless to make its 
interaction with the BPMN workflows clearer. The solid 
arrows define the workflows, and the dashed arrows are 
visualizing the information flow between service tasks and the 
ontology. 

Fig. 6. Communication of data acquisition and soft sensor service via 
the ontology 

 

The second box in Fig. 6 contains the data acquisition 
workflow. This workflow is started, when a MQTT message 
is published on the topic temperaturesensorvalues. In the 
current implementation this is done by the OPC UA 
aggregation server which is part of the physical entity. Every 
minute the OPC UA aggregation server fetches the life values 
of every temperature sensor in the physical entity via OPC UA 
and publishes them to the before mentioned MQTT topic as 
attribute-value pairs in the message payload. In the next step 
of this workflow the workflow engine publishes an MQTT 
message to the topic dataacquisition/request which starts the 
data acquisition service. The data acquisition service takes an 
array of temperature values from the message payload as 
input, calculates some characteristic metrics based on them 
and stores the results in the DTs database. Before these 
calculations are performed the data acquisition service sends 
a SPARQL query to the ontologies’ federated query endpoint 
to check if there is record of any damaged sensor. If there is a 

damaged sensor, the federated query endpoint responds with 
an MQTT message which includes the ID of the damaged 
sensor. With this information, the data acquisition service 
fetches a soft sensor for the damaged sensor from the virtual 
entity to reproduce the true sensor value. When the data 
acquisition service is done with its calculations, it publishes 
an MQTT message to the topic dataacquisition/response, 
which continues and finishes this workflow. In the third box 
in Fig. 6 a prototypical fault detection service is shown. In 
contrast to the data acquisition workflow, this workflow is 
started every 10 minutes by the workflow engine by 
publishing an MQTT message to the topic 
faultdetection/request. When the fault detection service is 
started it requests runtime data from the last 10 minutes from 
the ontologies and checks if there are any deviations. Because 
the fault detection service is currently in the development 
phase, this step will not be described in more detail in this 
work. If no deviation could be detected this workflow is 
terminated with no further action. But if the fault detection 
service detects a damaged sensor, it documents this in the 
ontology by a SPARQL update query and at the same time 
publishes an MQTT message to the topic 
temperaturesensordamaged. In the payload of this message 
the fault detection service includes the ID of the damaged 
sensor and the time at which the error occurred. As it is 
depicted in Fig. 6 this MQTT message automatically starts the 
soft sensor workflow. After the massage-start-event this 
workflow splits up into two branches and triggers the soft 
sensor service in the first branch and a user task in the second 
branch. The soft sensor service starts by querying the 
ontologies for context information about which sensors are the 
neighbors of the damaged sensor. After receiving the response 
from the ontologies, the soft sensor service requests runtime 
data from the damaged sensor and its neighbors via OBDA 
which it uses to train a data-driven regression model. This 
model, which we call a soft sensor, is stored in the virtual 
entity, and can be used by other services to reproduce true 
measurements from the damaged sensor. When the soft sensor 
service is finished with all its tasks it publishes an MQTT 
message to the topic softsensor/response that finishes the first 
branch of this workflow. In the second branch the user task 
will result in a pop-up on the machine operators screen with 
the request to replace the damaged sensor at the next planned 
maintenance. It continues with the sensor replacement service 
when the machine operation has confirmed the replacement of 
the damaged sensor. The purpose of the sensor replacement 
service is, to record this information in the ontology by closing 
the error interval of the before damaged and now replaced 
sensor. When done, the sensor replacement service publishes 
an MQTT message to the topic sensorreplacement/response 
and thereby finishes the second branch which terminates the 
whole workflow. The evaluation results of the discussed 
scenario are shown in Fig. 7. The PBTES was operated 
according to a predefined schedule (eight 
charging/discharging cycles) for two days. On the x-axis of 
each plot the time since the start of the experiment is shown. 
The graph shows the trajectory of temperature sensor FBR-TE 
4A1, which is the central sensor in plane 4 (compare Fig. 2). 
In the middle plot the SOC calculated by the data acquisition 
service is displayed. The red dashed line shows the true value 
of the temperature sensor FBR-TE-4A1 which overlaps with 
the measured value (blue dotted) for the first 770 minutes of 
the experiment. Consequently, the error in the state of charge 
calculation, which is plotted in the bottom plot, is zero during 
this time interval. After 770 minutes have elapsed, the 



measured value of FBR-TE-4A1 is manually overwritten with 
a constant value of 0 degrees Celsius in XAMControl to 
simulate a sensor fault. Under normal conditions (without the 
DT) this sensor error would lead to a significant error in the 
SOC calculation. This error is visualized in Fig. 7 via the 
trajectory of the blue dotted lines in the middle and bottom 
plot. With the proposed DT framework, this error can be 
immediately detected by the fault detection service which 
triggers further workflows as described earlier in this Section. 
As can be obtained from Fig. 7, the automatically trained soft 
sensor reproduces the true value of FBR-TE-4A1 with high 
accuracy. Thereby the SOC error (related to SOC = 1) of 
before nearly 15 percent can be reduced to a maximum of 
three percent. 

 
Fig. 7. Evaluation of the proposed framework with soft sensor service 

and improved SOC estimation 

V. CONCLUSION AND OUTLOOK 

In this paper we summarize the development of a digital 
twin for a lab-scale test rig of a packed bed thermal energy 
storage. For the implementation of the digital twin, a five-
dimensional framework was used. For the presented use case 
– a digital twin for a thermal energy storage – this approach 
proved to be very successful. The separation of the digital twin 
into five dimensions facilitates the cooperation in 
interdisciplinary teams. The encapsulation of domain-specific 
applications as micro-services allows experts of different 
fields to develop their services and models independently and 
deploy them together in one standardized platform. Industrial 
energy systems often operate under very harsh and constantly 
changing conditions which makes their economic and 
efficient operation difficult. The digital twin implemented in 
this work is able to handle and overcome these problems by 
combining innovative technologies and expertise from several 
domains. On the digital twin platform various services can be 
linked together to make the operation of industrial energy 
systems more reliable. We showed that the deployment of 
three simple services and their connection via the connection 
dimension and the workflow engine already show noticeable 
advantages. 

In the discussed evaluation case, where a soft sensor 
service is used to compensate a damaged sensor, the digital 
twin achieves to significantly reduce the impact of a damaged 
sensor on other services and the physical entity’s efficiency. 
In addition to that, the implementation of a 5D digital twin for 
industrial energy systems provides many new opportunities 
for the future. High-fidelity adaptable simulation models that 
constantly represent the behavior of the physical entity are a 
perfect basis for operational optimization and the simulation 
of possible scenarios in the future. Classification models for 
fault detection could be trained on failures simulated by the 
virtual entity and deployed to detect these failures in the 
physical entity via transfer learning. The centralized storage 
of information in the data dimension provides a data- and 
knowledge base for machine learning algorithms which could 
predict failures in the future by recognizing patterns in historic 
data. The five-dimensional digital twin framework is designed 
to be implemented on other industrial energy systems and to 
facilitate the development of complex services of different 
domains. Due to the scalability of all the five dimensions the 
digital twin can be extended with new services, models, and 
workflows at any time without affecting the existing parts of 
the system. 
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