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ABSTRACT 
This paper proposes a state of charge (SOC) 

estimation model that combines data-driven method 
with model-based filtering method. Firstly, an improved 
arithmetic optimization algorithm (AOA) is employed to 
optimize the initial values of the long short-term memory 
(LSTM) network, and the optimized LSTM network is 
utilized for the preliminary estimation of SOC. Then, an 
adaptive unscented Kalman filter (AUKF) is employed to 
correct the SOC estimation results. Experimental results 
demonstrate that the proposed model achieves accurate 
and smooth SOC estimation while being able to quickly 
respond to initial SOC errors. 

Keywords: State of charge, Long short-term memory 
network, Arithmetic optimization algorithm, Adaptive 
unscented Kalman filter. 

NONMENCLATURE 
Abbreviations 
State of Charge SOC 
Arithmetic Optimization Algorithm AOA 
Long Short-Term Memory LSTM 
Adaptive Unscented Kalman Filter AUKF 
Dynamic Stress Test  DST 
Federal Urban Driving Schedule  FUDS 
Root Mean Square Error  RMSE 
Maximum Error  MAX 
Symbols 
Output variables at time t ot 
Approximate covariance of output error Ht

Process noise variance Qt 

Measurement noise variance Rt 

1. INTRODUCTION
Batteries serves as crucial energy storage devices in

various industrial sectors. SOC is a vital parameter for 

assessing the remaining capacity of a battery. Accurately 
estimating the battery SOC contributes to prolonging 
battery lifespan and maximizing its performance 
utilization [1]. 

Common methods for SOC estimation include 
Coulomb counting, open-circuit voltage (OCV) method, 
model-based filtering methods, and data-driven 
methods. The Coulomb counting calculates the battery’s 
capacity by integrating the current over time [2]. 
However, this method heavily relies on the accuracy of 
current measurements and is prone to cumulative 
measurement errors, which can result in high 
measurement costs. The OCV method estimates the 
corresponding SOC based on the battery’s OCV [3]. 
However, it can only be used when the battery is in a 
static state. 

Model-based filtering methods estimate the SOC by 
establishing an equivalent model that represents its 
behavior, such as equivalent circuit model, 
electrochemical model, and data-driven model. These 
methods utilize techniques such as Kalman filtering or 
extend Kalman filtering to optimize the SOC estimation 
based on the model’s dynamics and measurements [4]. 
However, Kalman Filtering is not applicable to nonlinear 
systems, and extended Kalman filtering may neglect 
higher-order terms, leading to a decrease in estimation 
accuracy. Therefore, the Unscented Kalman Filter is a 
better choice as it can be used for nonlinear systems and 
provides a more comprehensive description of system 
nonlinearity. Indeed, constructing an equivalent model 
for most batteries that accurately captures their internal 
reactions and chemical characteristics can be a complex 
task. Developing such models requires a deep 
understanding of battery chemistry and extensive 
experimental data for parameter estimation [5]. 

Data-driven methods can be used to establish 
battery data-driven models by leveraging a large volume 
of relevant data [6]. By training on a diverse dataset, 
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data-driven models can capture the complex 
relationships between input variables (e.g., current, 
voltage, temperature) and the corresponding SOC, 
enabling accurate estimation without explicit knowledge 
of the underlying chemistry. Common data-driven 
models used for battery SOC estimation include support 
vector machines, artificial neural networks, and other 
machine learning algorithms [7]. These models are 
capable of learning complex relationships from the 
input-output data and can be trained to estimate SOC 
accurately based on the provided dataset. Among them, 
LSTM network has found wide application in SOC 
estimation due to its ability to effectively model the 
dynamic behavior of batteries and handle long-term 
dependencies in the input data. Reference [8] proposed 
a method that utilized LSTM network to predict multiple 
parameters of a battery. This method was able to 
establish an equivalent model and accurately estimate 
the parameters based on the data collected from an 
electric vehicle over a period of one year. However, data-
driven models have high requirements for the accuracy 
of the input data and are prone to getting trapped in local 
optima, leading to significant deviations in the results [9]. 

To address the limitations of above methods, this 
paper proposes a fusion model that combines model-
based filtering methods with data-driven methods. This 
model eliminates the need for constructing complex 
equivalent circuit models or chemical models while 
effectively mitigating estimation errors caused by the 
data. The innovations of this paper are as follows: 

(1) Integration of Model-Based Filtering and Data-
Driven Methods: The paper proposes a novel approach 
that combines the strengths of model-based filtering 
methods and data-driven techniques. By leveraging the 
advantages of both approaches, the proposed model 
aims to achieve more accurate and robust SOC 
estimation. 

(2) Arithmetically Optimized LSTM Network: The 
paper introduces an improved AOA to optimize the initial 
values of the LSTM network used in the SOC estimation. 
This optimization enhances the performance of the LSTM 
network, leading to improved initial SOC estimation 
results. 

(3) AUKF for SOC Correction: The paper utilizes the 
AUKF to correct the SOC estimation results obtained 
from the data-driven model. By incorporating the AUKF, 
the proposed model can effectively adjust and refine the 
SOC estimation, resulting in more accurate and reliable 
SOC values. 

The structure of this paper is as follows. Section 2 
describes the modeling approach used in the proposed 

hybrid model. Section 3 presents the experimental setup 
and methodology used to validate the effectiveness of 
the proposed model. Section 4 summarizes this paper.  

2. METHODS 
This section describes the methods used in the study 

that are necessary for reproducing the results. 
Specifically, it covers three aspects: the construction of 
the LSTM network, the optimization of initial 
parameters, and the development of the hybrid model. 

2.1 The construction of the LSTM network 

The structure of the LSTM network is illustrated in 
Fig. 1. LSTM network is a type of recurrent neural 
network (RNN) that is designed to capture long-term 
dependencies in sequential data. Unlike standard RNN, 
LSTM network has additional memory cells, or gates, that 
enable them to selectively remember or forget 
information over time. LSTM network can be divided into 
three parts: the forget gate, the input gate, and the 
output gate. These gates allow the LSTM to selectively 
filter long-term historical data. 
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Fig. 1. Structure of an LSTM unit 

In the context of battery SOC estimation, there are 
several parameters that influence it. This paper considers 
voltage, current, and temperature as the inputs to the 
LSTM network, and SOC as the outputs. Additionally, the 
number of hidden layers, the number of neurons, the 
maximum number of iterations, and the learning rate are 
parameters that need to be predefined for the LSTM 
network. To address this, the paper utilizes the AOA to 
initialize these parameters. 

2.2 Arithmetic optimization algorithm 

The AOA utilizes arithmetic optimization operators 
to search for the optimal individuals and obtain the 
optimal parameter values. These operators, such as 
addition, subtraction, multiplication, and division, are 
used to iteratively explore the solution space and 
optimize the parameters for the LSTM network. Through 
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random selection, each individual has an equal 
probability of entering the exploration stage and 
development stage. This ensures that all individuals have 
an equal chance to explore the solution space and 
contribute to the development of the optimal parameter 
values. 

During the exploration stage, each individual 
explores the solution space by using multiplication and 
division operations within a wide range of values. This 
allows for a broad search of potential solutions, enabling 
the algorithm to explore different parameter 
combinations and identify promising regions in the 
search space. During the development stage, each 
individual further explores the optimal solution by using 
addition and subtraction operations with a smaller 
range. This allows for a more focused search around 
promising solutions identified. The combination of 
exploration and development helps the algorithm 
converge towards the optimal parameter values for the 
LSTM network. 

2.3 Adaptive unscented Kalman filter 

UKF is a variant of Kalman filter that addresses the 
limitations of linear models and Gaussian noise 
assumptions. It is designed to estimate the state of a 
nonlinear dynamic system in the presence of process and 
measurement noise. The key principle of the UKF is to 
approximate the probability distribution of the system’s 
state using a set of representative sigma points. These 
sigma points are carefully chosen to capture the mean 
and covariance of the system’s state distribution. The 
predicted state and sigma points are used to estimate 
the predicted measurement using the measurement 
model. The predicted measurement is compared with 
the actual measurement to compute the measurement 
residual. The covariance matrix is updated by 
incorporating the predicted state, predicted 
measurement, and the measurement residual. The 
corrected state estimate is computed by adjusting the 
predicted state using the updated covariance matrix and 
the measurement residual. 

Indeed, the standard UKF requires predefining 
process noise and measurement noise, which may not 
accurately capture the variations in these noise sources 
that occur during battery operation. Such time-varying 
noise can introduce significant errors in SOC estimation 
results. To address this challenge, adaptive variants of 
the UKF have been developed. These adaptive UKF 
approaches dynamically estimate the process noise and 
measurement noise covariance matrices based on the 
available measurements. By continuously adapting the 

noise covariances, the adaptive UKF can effectively 
account for the varying noise characteristics and improve 
the accuracy of SOC estimation. The equation for noise 
adaptive update, as denoted by equation (1), is as 
follows: 
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Where Ht means approximate covariance of output 
error at time t, N denotes dimension of variable, and Qt 
and Rt represent process and measurement noise 
variance, respectively. 

3. RESULTS AND DISCUSSION 

In this section, a comparison is conducted between 
LSTM, LSTM-UKF, and the proposed model to validate 
the performance of the proposed AOA-LSTM-AUKF 
approach. 

3.1 Dataset and indicators 

In this study, the NASA open-source battery dataset 
is utilized, which includes various parameters of lithium 
batteries under dynamic stress test (DST), US06, and 
federal urban driving schedule (FUDS) driving cycles at 
different temperatures. To validate the generalization 
capability of the proposed model, the DST dataset is used 
as the training set, while the US06 and FUDS datasets are 
used as the testing sets. 

The performance of the proposed model is evaluated 
using root mean square error (RMSE) and maximum 
error (MAX). These metrics provide insights into the 
accuracy and maximum deviation of the SOC estimation 
results compared to the ground truth values. The 
equations are as given by (2) and (3). 

=

= −
K

actual predict
i

SOC SOC
K

2

1

1
RMSE ( )  (2) 

= −actual predictSOC SOCMAX max(| |)  (3) 

3.2 SOC estimation results 

Using DST as training dataset, US06 and FUDS as test 
dataset, so as to obtain SOC estimation results at 0°C, 
20°C, 30°C, and 50°C. Fig. 2 and Fig. 3 illustrate the results 
obtained from the LSTM network. Fig. 4 and Fig. 5 depict 
the results obtained from the LSTM-UKF model. Lastly, 
Fig. 6 and Fig. 7 showcase the results obtained from the 
proposed model. From the figures, it is evident that the 
proposed model yields more accurate and smoother SOC  
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Table I 

SOC estimation results for US06 and FUDS at different temperatures 

Condition Temperature 
RMSE (%) MAX (%) 

LSTM LSTM-UKF Proposed model LSTM LSTM-UKF Proposed model 

US06 

0 °C 2.31 1.32 0.58 9.78 8.73 1.83 

20 °C 2.36 1.21 0.54 8.33 5.40 1.89 

30 °C 2.77 1.09 0.52 9.06 4.22 2.19 

50 °C 2.73 1.26 0.61 9.74 5.05 2.27 

FUDS 

0 °C 1.87 1.17 0.45 7.07 5.02 1.99 

20 °C 2.19 1.29 0.43 8.27 6.52 2.02 

30 °C 3.14 1.60 0.48 11.37 7.31 2.21 

50 °C 2.26 1.24 0.49 8.50 5.32 1.52 
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Fig. 2. Results of LSTM network for US06 cycles at: (a) 

0°C; (b) 20°C; (c) 30°C; (d) 50°C. 
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Fig. 4. Results of LSTM-UKF for US06 cycles at: (a) 0°C; 

(b) 20°C; (c) 30°C; (d) 50°C. 
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Fig. 6. Results of proposed model for US06 cycles at: 

(a) 0°C; (b) 20°C; (c) 30°C; (d) 50°C. 
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Fig. 3. Results of LSTM network for FUDS cycles at: (a) 

0°C; (b) 20°C; (c) 30°C; (d) 50°C. 
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Fig. 5. Results of LSTM-UKF for FUDS cycles at: (a) 0°C; 

(b) 20°C; (c) 30°C; (d) 50°C. 
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Fig. 7. Results of proposed model for FUDS cycles at: 

(a) 0°C; (b) 20°C; (c) 30°C; (d) 50°C. 
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estimation results compared to the others. The SOC 
trajectory in the proposed model exhibits less variation 
and closely follows the ground truth values, indicating its 
superior performance in estimating the battery’s SOC. 

Table I summarizes the RMSE and MAX values for 
each model. From the table, it is evident that the 
proposed model exhibits the lowest errors and highest 
accuracy across various driving conditions. The average 
RMSE is less than 0.6%, and the average MAX is less than 
2.1%. In particular, under the FUDS driving condition, the 
RMSE is below 0.5%, and the lowest MAX value is 1.52%. 
These results highlight the superior performance of the 
proposed model in SOC estimation, even under 
challenging driving scenarios. 

4. CONCULSTION 

In conclusion, this study presents a novel hybrid 
model for SOC estimation in batteries, combining data-
driven methods and model filtering techniques. By 
leveraging the strengths of LSTM networks and 
incorporating the AUKF for state correction, the 
proposed model achieves accurate and reliable SOC 
estimation without the need for complex equivalent 
circuit models. The proposed model demonstrates 
excellent generalization capability, as it achieves low 
RMSE and MAX values across different driving cycles. The 
average RMSE and MAX values remain below 0.6% and 
2.1%, respectively, with even lower errors observed in 
the FUDS driving cycle. 

Overall, the proposed hybrid model offers a 
promising solution for accurate and smooth SOC 
estimation in batteries. It addresses the limitations of 
existing methods and shows potential for applications in 
various industrial sectors that rely on battery energy 
storage systems. Future research directions may include 
further enhancing the model's robustness, investigating 
different adaptation strategies, and exploring its 
applicability in real-world battery systems. 
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