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ABSTRACT 
 Digital Twin technology, a transformative 

innovation in the Infrastructure industry, has the 
potential to drive a sustainable energy transition. By 
creating interactive virtual representations of physical 
systems, it boosts operational efficiency, enabling 
efficient integration of renewable power, interoperable 
grid components, and long-term decarbonisation 
planning. It also enables predictive maintenance, 
reducing energy use and operational costs, thereby 
democratising energy access. Nonetheless, these 
important benefits do not come without a price; as 
digitalisation penetrates the energy grid, it becomes 
vulnerable to cyberattacks and data interception, while 
the quality and interpretation of input data bring 
uncertainty. Critically assessing the holistic impact, 
underlining the importance of supporting the energy 
transition, this paper proposes also mitigation strategies 
to maximise this promising tool’s performance. Well-
defined cybersecurity regulation, clarity on stakeholder 
responsibilities, and safe data handling should be 
prioritised. Furthermore, advanced protection digital 
tools and a standardised system for intersectoral Digital 
Twins would unlock additional capabilities.  

Keywords: Digital Twins, Renewable Energy, Clean 
Energy, Energy 4.0   

NONMENCLATURE 
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DT Digital Twins 

1. INTRODUCTION
1.1 Digital Twins definition

Digital Twins (DT) are a promising and innovative 
concepts, first developed by Grieves et al. [1] and the 
NASA team [2], and now deployed in different fields 
varying from health to manufacturing and infrastructure 

systems, such as transportation, energy and water 
management [3]. Despite the broad spectrum of 
technologies, functions, and applications, DT can be 
broadly defined, decoupled from characteristics that 
apply to specificcases, as a digital representation of a 
physical, real-world system (element or process) 
continuously adapted based on an ongoing two-fold 
exchange of information [3]–[6], which is the alarming 
difference with simpler simulation models. Beginning 
from the real-world entity to shape the computerised 
version and then transferred the other way, it aims at 
improving the physical twin or obtaining additional input 
to optimise replication and increase utilisation value [6]. 
Due to the evolving nature of DT, It can be deduced that 
it is more a methodology than an actual technology 
product [3]. DTs are generally used for what-if scenarios 
simulations, forecasts, diagnostics, optimisations, 
sensitivity analyses and, ultimately, efficient decision-
making [3], [7]. Following the technology leaps in this 
field, DT's fidelity is constantly enhanced; however, 
performance restrictions may beimposed due to data 
storage and computational capacity or cost and decision-
making response time requirements [6]. The success and 
cementation of DT’s significantly relies on the underlying 
telecommunications and data infrastructure, as real-
time data collection and transmission speed and 
capability, data storage volume and security, generate 
critical interdependencies [8].  

1.2 Implementation in energy sector transition 

Energy is crucial for economic and social prosperity, 
with consumption rising globally due to industrial 
growth, population increase, and, even more lately, a 
shift towards electricity [9]. However, it is also a major 
contributor to climate change since the sector accounts 
for more than 70% of the total CO2 emissions [10], 
indicating the vital importance of sustainable practices. 
In response, stepping towards Energy 4.0 that 
encapsulates interconnected and sustainable systems, 
founded on decarbonisation, digitalisation and 
decentralization, hasinitiated. These pillars are inevitably 
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interdependent, with digitalisation possessing a the 
critical role; decarbonising, demands the integration of 
multiple decentralised renewable sources, e.g. solar 
panels, wind turbine farms, geothermal energy facilities 
supported by storage installations like lithium and hydro 
batteries, widely geographically distributed – on- and 
offshore, in remoted or central areas - and managed by 
various operators under different schemes – public or 
private, bulk or micro transmission systems [11]. Hence, 
developing digitalised data-driven systems like DT, 
supported by the existing advanced digital technologies, 
such as 5G networks, IoT, AI, are critical to enabling 
interoperability between the actors, reliability, 
maximum efficiency of renewable energy production 
and multi-level managing [12]. Though it is still the 
infancy of the energy sector DT epoch, there are already 
several burgeoning success stories illuminating its vast 
potential. Originally started from the Oil & Gas industry 
[13], DT implementation swiftly spread into the realm of 
renewable energy; DT for wind turbine design and 
predictive maintenance were launched by Siemens in 
2015 [14] continuing then throughout the whole 
spectrum of the industry from manufacturing, operation 
and grid demand-consumption monitoring to the UK 
National Digital Twin. As the technology is only just 
beginning to gain widespread traction in the energy 
sector, a comprehensive evaluation of its profound 
benefits, alongside an analysis of the hidden risks and 
challenges, has not yet been fully realized. 
Acknowledging the indisputable potential and essential 
nature of the green energy transition, this paper not only 
aspires to bridge this knowledge gap, but also aims to 
propose mitigation strategies that will facilitate the 
successful adoption of DT.  
  

2. MATERIAL AND METHODS 

This study is the result of an extensive literature 
review, based on international works from different 
sectors and disciplines, aiming at exploring the role of 
digital twins in facilitating the energy transition. 
Preliminary researchon the topic indicated the critical 
role of digitalization and especially of DT in the complex 
endeavour of transforming power sector. The initial 
assortment of articles was organized based on the 
quantity of citations each received and on the year of 
publication – research on DT and the energy sector 
skyrocketed only after 2017 [15], thus studies before 
were considered outdated and were deprioritized. A 
reliability check was then conducted on each document 
to ensure peer-review approval and avoid discernible 

biases. The selection was further refined based on the 
following criteria; content relevance, innovative 
perspectives, practical implications – including case 
studies, regulation recommendations and technical 
insights – and geographic and sectoral level diversity to 
ensure multilateral coverage and smooth out 
peculiarities; underpinning the broad yet in-depth 
exploration of the topic. 

3. RESULTS AND DISCUSSION 
 

3.1 Benefits - Contribution towards the Energy Transition 

3.1.1 Interoperability and supply-demand balance  
Interoperability between the parts of the growing 

energy grid would address the renewables’ main 
drawback: unreliability due to weather conditions [16]. 
Securing the proper operation of individual energy grid 
components is insufficient since maximum capacity 
performance originates from the system's 
interoperation. A twofold communication between 
energy and storage installations and accurate supply 
forecasts based on weather and demand-consumption, 
all channelled to the same DT model [17]–[18], will lead 
to timely decision-making apropos the optimal energy 
and storage mixture. Furthermore, this responsiveness 
will enable production and energy trading between 
individuals [16]. Demand-determined production and 
peak-to-average consumption ratio reduction prevent 
energy wastage lowering suppliers' operational costs. 

 
3.1.2 Long-term energy infrastructure planning 

The massive volume of data and the interconnection 
between DT could also provide a valuable tool for 
long term urban planning decisions concerning the 
capacity, positioning and type of energy supply facility 
that covers the projected future needs [19]. Articulating 
predictive scenarios and conducting pertinent cost-
benefit analyses is considered challenging since 
generation, transmission, and distribution functions are 
usually disintegrated across different entities, demand 
trends are related with unpredictable technological and 
economic parameters,and production - particularly from 
renewable sources - is also unstable [11], [20]. Therefore, 
optimum energyprojects should be designed based on 
the transparent process of multiple inputs fulfilling 
increasing populationdemands, stakeholders' interests 
and environmental regulations, ensuring maximum 
renewable energy investment value and eliminating 
financial and operational risks [17], [21].  
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3.1.3 Lifetime asset management 
Except for this, efficient life-time asset management 

is a DT feature with significant importance for the energy 
projects due to high initial investment, long life-span and 
need for uninterrupted operation. Beginning with 
theconstruction stage, a virtual project replication 
before and after the initiation would diminish delays, 
resources waste and execution risks [22]. Maintenance is 
usually conducted based on prescheduled checks 
andreplacements imposed by guidelines that may 
underestimate components' performance. Especially for 
wind andsolar farms that need special equipment in 
remote and inaccessible areas, these unnecessary 
interventions could burden the operator with 
considerable costs [11]. An extensive sensor network, 
collecting information such as voltage level, solar panel 
temperature, wind blades speed and vibration or leakage 
detection, and a high-fidelityAI system composing a 
virtual replication of the grid would enable predictive 
maintenance strictly when required [16], [23]. Besides 
end-of-life-time replacement, early damages could cause 
disruptions or shutdowns with severe repercussions. 
Advanced pattern recognition algorithms and 
continuous automated control systems on the digital 
model provide an early warning, and an intervention can 
be timely planned. The diagnostic role is similarly 
essential since data collection after a failure may 
improve operational systems [17].  

 
3.1.4 Environmental benefits 

Boosting renewable's efficiency reduces the 
operational costs [16], [18], [20] and broadens the profit 
margin creating a safe investing environment and 
incentivising private and government funds that will 
support the research and the execution of these projects 
[24]. Optimised distribution, storage and interoperability 
will eliminate energy wastage [7], whereas accurate 
predictive maintenance will save resources and prevent 
landfill congestion with non-recyclable wind blades and 
solar panels [25]. Data extracted from the whole lifetime 
simulation will provide valuable feedback for efficient 
sustainability transition regulation updates.  

 
3.1.5 Social benefit 

The decrease of energy production costs will be 
transferred to the retail pricing relieving the pressure on 
consumers that currently spend up to 1/3 of their income 
on heavy energy bills [19]. Moreover, access to private 
energy consumption data, combined with decentralised 
domestic energy generators, enables citizens to schedule 
their energy individually needs most efficiently [5]. 

Insightful energy infrastructure planning will even out 
energy access inequality and make the grid stable even 
for remoted underdeveloped areas [26].  
 
3.2 Cost-benefit analysis  

The cost of installing DT varies depending on 
complexity, size and number of facilities included, the 
sensors coverage area and the level of accuracy required. 
Noted that the cost is not just limited to the software and 
hardware components but further includes consulting 
and integration fees, training costs, and ongoing 
maintenance [27]. Industry review showcases that the 
upfront investment for a single high-tech factory, similar 
to an energy plant, fluctuates between £500K and £650K, 
whilst the payback period is expected to be six years on 
average [28]. Since the DT market will surge in the 
following years, massive application will lower the cost 
of providing access to smaller companies. Measuring 
different effects of DT implementation proves the 
contribution to energy production optimisation, cost and 
resources efficiency and CO2 emissions decrease (Table 
1). It should be noted that the indicators were extracted 
from studies in different environments and scales, so 
they can be used more as a proxy than an absolute 
measurement.  

 
3.3 Risks and uncertainties  

Implementing digital twins for executing all the 
management operations renders the energy grid 
vulnerable to cyberattacks [29]. Malicious software can 
be installed provoking disruptions in the virtual 
replication that penetrates automatically to the real 
system with severe repercussions in the economic 
activities – in some cases even more than natural 
disasters [16] - and people's safety, e.g. interrupting 
hospital's operations [30]. 76% of professionals deem 
cyber-attack as the number one threat to their operation 
[31]. Massive interconnection and ongoing data sharing 
between participants raise concerns regarding data 
privacy and intellectual property. The flowing sensitive 
information, like personally identifiable data, bank 
accounts or confidential energy systems' location and 

Fig. 1. Quantified Digital Twins effects in the energy sector 
based on established literature 
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operation, are potentially powerful tools for criminal 
activities like blackmailing or money embezzlements, as 
well as targeted insurance and marketing strategies [32].  

Additionally, the quality and sufficiency of the 
accumulated data are questionable. Especially when 
completely automated data-driven systems, like AI, are 
deployed, the input origin should be carefully 
considered. When based on historical data, forecasting 
might ignore the latest updates or inevitably fails to 
predict socio-political events like war or pandemic, which 
will dramatically change energy supply and demand [9]. 
Moreover, uncritical and oversimplified semantics can 
generate significant errors in the interpretation [33], 
while the fact that energy digital twins are still an 
immature technology makes verification and validation 
challenging.  

Launching a new digital methodology in long-
established industries might come across to 
inexperienced staff unwilling to adaption and innovation 
[33], a particularly critical factor since human consent is 
necessary to overcome initial challenges. Energy is also a 
highly vertical-fragmented sector that lacks 
standardisation and commonly accepted terminology 
and framework [18]; substantial obstacles considering 
that wide interlevel andintersectoral cooperation will be 
required even from the early designing stage, let alone 
when the initial investment actions are negotiated. 
Questions such as who will be responsible for data 
ownership, hardware installation and maintenance, in 
which aspect optimisation should focus (e.g., 
organisation profit or environmental footprint) and 
whose interests should be prioritised are not rarely a 
bone of contention [33]. The production of hardware 
elements like servers and sensors and the constant 
operation data centres demanda considerable amount of 
energy and resources [34]. Therefore, whether energy 
savings caused by digitalisation outweigh, this energy 
demand rise is still under investigation.  

Finally, smart energy transition and the 
foreshadowed benefits are anticipated to further widen 
the gap between developed and developing countries. 
Except for financial deficiency, the chronic shortage of 
recorded data makes it impossible for weaker economies 
to keep pace with this surging advancement. 

  
3.4 Recommendations for mitigation of challenges 

Considering the prospective spectacular 
advancement of DT implementation in the energy sector, 
it is profound that the adoption process is now 
irreversible. Hence, these alarming risks should be better 
seen as valuable toolsfor further improvement rather 

than deterring reasons. First of all, appropriate 
elaboration of the legislative framework for data 
protection is of paramount importance. A clear and 
considerable regulation update should be established to 
define ambiguities regarding data intellectual ownership 
[7]. Partial access permission should be provided to 
different actors depending on their role in the digital 
process sequence [3]. Data interception should be 
deemed a severe crime and penalised accordingly. 
Determining clearly the responsibilities of each 
stakeholder in the funding, operating and maintenance 
stage will make procedures more transparent and 
functional and, digital twins project more credible, 
speeding up investment and business plans approval 
[32], [35].  

Pertaining to the cyber-security threat, as DT 
become widely used, the accumulated experience and 
the technological evolution will enable more 
sophisticated tools to identify cyber threats, diagnose 
the weaknesses or activate timely recovery practices 
[32]. The majority of cyberattacks is initiated by internal 
users; therefore, monitoring and recognising human 
behaviour motives might counteract this threat [36]. 
Algorithms trained to discern attacks and system failures 
and respond accordingly preserving functionality in any 
case will be decisive for critical energy infrastructure 
[26]. DTs themselves also hold a decisive role. The 
personnel can be safely trained by simulating potential 
attack scenarios, and more robust, multi-agent response 
strategies can be configured [29].  

Digital twins' usefulness can be further maximised if 
intersectoral virtual infrastructure models are deployed 
[5], especially for achieving ambitious objectives like 
sustainability, where so many different actors are 
inseparably interdependent. A case in point would be 
merging electrical transportation and energy models or 
electricity and telecommunications in a shared digital 
twin. This would enable deeper comprehension of the 
indirect consequences of a disruption; e.g., in case of a 
natural disaster a fault in energy transition would 
immediately affect railways systems or 
telecommunication operations. This interdependency 
cannot be overlooked in a realistic digital replication. 
This holistic view contributes to more accurate 
predictions and planning. To make this interconnection 
feasible and overcome internal fragmentation, a 
standardized metric, terminology and regulation system 
is necessary to monitor the digitalisation progress, the 
data quality and the benefits, especially those that are 
hard to monetise, like social and environmental 
advantages [14], [18]. This framework has to be agile and 
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adaptive to the continuously evolving society and needs, 
and the technological leaps; otherwise, it can be 
counterproductive, leading to bureaucratic dead ends. 

4. CONCLUSIONS 
The present study discusses the deployment of 

Digital Twins in sustainable energy transition, aiming to 
assess the prominent benefits and level of uncertainty, 
articulate the perceived risk and challenges, and propose 
mitigation strategies. Their crucial role in achieving the 
fundamental goals of decarbonisation and 
decentralisation has been identified. In particular, 
interconnecting all the energy grid components in a 
shared virtual model maximise interoperability 
efficiency, exhausting renewables capacity and 
regularising supply and demand. Long-term energy 
infrastructure planning is improved, whereas the existing 
assets are managed based on predictive maintenance. 
From an environmental and social perspective, energy 
and resource saving and lower energy production costs 
are also substantial.  

Nonetheless, the risks and uncertainties of this 
technology should not be disregarded. Cyber-security 
and data privacy are major concerns, while quality and 
considerate data interpretation are necessary to ensure 
the results' credibility and usefulness. The possibilities of 
consuming more energy than saving and exacerbating 
social inequalities are still under investigation. 
Remarkable progress has been made apropos the 
mitigation of these challenges; appropriate, carefully 
elaborated regulations and policies should be instituted 
to protect data ownership and configure a standardised 
collaborative environment to accomplish wider 
intersectoral Digital Twins. More sophisticated digital 
tools should be deployed to prevent disruptions caused 
by cyberattacks.  

Limitations of the present study include: Firstly, that 
a digital twin is not a specifically defined technology 
product, but an emerging concept. Therefore, explicit 
boundaries cannot be delineated to assess anticipated 
costs and quantify benefits with certainty. The data 
provided in the cost-benefit analysis section are rough 
estimations from research campaigns concerning digital 
twins of varying sizes and qualifications. Secondly, digital 
twin actual installation and deployment is recent while 
the research around this topic has escalated in the last 
years, so it is reasonable that case studies results are 
quite premature. More comprehensive implementation 
and observation of the physical and virtual models' 
interaction throughout the whole lifetime of energy 
operations would be more reliable, since further data 

collection and algorithms' training result in models' 
better performance.  

Further research should be conducted about the 
long-term economic, social and environmental 
implications of Digital Twins in the energy sector to 
decrease uncertainty. The golden thread should be 
detected between data privacy and safety while 
achieving optimum performance and predictability since 
this is strongly related to the amount and quality of 
information inserted into the model. Authorities and 
policymakers should seriously consider the investigation 
results to cultivate a safe environment for users and 
companies and provide an impetus for future 
investments that will boost Digital Twin development.  
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