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ABSTRACT 
 The building energy system faces uncertainties 

from renewable energy power generation and energy 
demand, and the design using deterministic method will 
introduce the risk of suboptimal decisions. In this paper, 
a stochastic programming model is formulated for the 
building energy system planning problem under source 
and load uncertainties. Facing the computational burden 
caused by massive stochastic annual scenarios, a two-
level scenario reduction method of typical annual 
scenario reduction and typical daily scenario reduction is 
proposed, which ensures the solvability of the stochastic 
programming model and takes into account the 
uncertainty of design boundary. To illustrate the model’s 
application, the design of an integrated energy system 
for an industrial park is investigated. The results show 
that the stochastic planning method can maximize the 
life-cycle economic benefit of the integrated energy 
system under uncertain design boundaries comparing 
with the deterministic planning method. In addition, the 
flexibility of the energy storage system can resist a 
certain degree of load forecasting deviation and improve 
energy supply reliability of the system.  

Keywords: integrated energy system, uncertainty, 
stochastic optimization, scenario reduction  

NOMENCLATURE 

Symbols 

𝑘 ∈ 𝐾 Typical annual scenario set 
𝑚 ∈ 𝑀 Equipment type 
𝑗 ∈ 𝐽 Number of equipment type 
𝑡 ∈ 𝑇 Time step of the model 
𝑐 ∈ 𝐶 Continuous equipment 

𝑑 ∈ 𝐷 Discrete equipment 
𝜋(𝑘) Probability of scenario 𝑘 
𝑣 Variable maintenance cost factor 
𝐺𝑝 Price of gas [CNY/m3] 
𝐸𝑝𝜏 Electricity price [CNY/kW] 
𝐺𝑘,𝐼𝐶𝐸,𝑚,𝑗,𝜏 Gas consumption of the ICE [m3] 

𝑃𝑔𝑟𝑖𝑑,𝑘,𝜏 Power purchased from grid [kW] 

𝑞𝑘,𝑑,𝑚,𝑗,𝜏 Output of discrete equipment [kW] 

𝑞𝑘,𝑐,𝜏 Output of continuous equipment [kW] 
𝑞𝑝𝑣,𝑘,𝜏 PV power generation per unit [kW/m2] 

𝑞𝑘,𝜏
𝑖𝑛 Input energy of storage system [kW] 

𝑞𝑘,𝜏
𝑜𝑢𝑡 Output energy of storage system [kW] 

𝐶𝑎 Installed capacity of each device [kW] 

𝜂 Efficiency of each device 

𝜌𝑚 Thermoelectric ratio of ICE 
𝜔 Minimum operating load rate  
𝐸𝐸𝑆,𝑘,𝜏 Energy stored in storage battery [kWh] 

𝐴𝑟𝑜𝑜𝑓 Available roof area [m2] 

1. INTRODUCTION
Building energy system plays an important role in the

deepening reform of energy supply side and demand 
side. The design of building energy system is often a 
complex decision-making process. Firstly, it will face the 
optimal matching problem of numerous available energy 
technologies, which involves decision-making problem of 
multiple conflicting objectives. Secondly, design and 
operation are coupled, and the structure and capacity of 
the system not only determine the initial investment, but 
also affect the operation strategy, which in turn affects 
the energy efficiency and operation economy of the 
system. 

In order to achieve the optimal design of complex 
building energy system, the optimization design method 
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based on mathematical programming is widely used in 
system technology portfolio and equipment capacity 
sizing[1]. Common mathematical programming models 
include linear programming (LP), mixed integer and 
linear programming model (MILP) and non-linear 
programming model (NLP)[2]. The worth of any 
mathematical model used in scientific research or 
engineering practice depends on the reliability and 
accuracy of its outputs. However, due to incomplete 
knowledge and inherent stochasticity of the system, any 
uncertainty of model input parameters will lead to 
uncertainty of model outputs as well. Uncertainty in the 
design process of building energy system can be traced 
to several aspects, such as: the stochasticity of 
renewable energy output and building energy demand. 
If deterministic boundary conditions and optimization 
model are used for energy system design ignoring 
uncertainty, the deterministic optimal solution may 
become a non-feasible solution when a stochastic 
disturbance occurs, and the design scheme will deviate 
from the actual requirements, which will lose the 
meaning of optimal design. However, in most studies, 
the optimization method of energy system design still 
adopts a deterministic approach[3-5]. To effectively 
circumvent system failures due to uncertainty, designers 
usually use the worst-case scenario method or the 
factor-of-safety method to increase the design capacity, 
but both methods may result in redundant design, and 
this phenomenon seems to have formed a consensus 
both nationally and internationally[6,7]. 

Facing the uncertainties in building energy demands 
and renewable energy power generation, the stochastic 
planning method improves the rationality of building 
energy system design from the concept level, including 
economic benefit and energy supply reliability. In this 
paper, we propose a stochastic planning method 
considering source and load uncertainties. Firstly, a 
stochastic programming model is formulated with the 
objective function of minimizing the cost during the 
whole project life cycle. On this basis, the scenario 
reduction technology is used to realize the two-level 
scenario reduction from stochastic annual scenario set to 
typical annual scenario set and from typical annual 
scenario set to typical daily scenario set. Finally typical 
daily scenarios are used as the design boundaries of the 
stochastic programming model. Taking an integrated 
energy system as the case study, the traditional 
deterministic scheme and the stochastic scheme are 
compared to verify the economic advantages of the 
stochastic planning method.  

2. MODEL FORMULATION
In order to study the optimization design method for

building energy system under dual source and load 
uncertainty environment, this paper takes a distributed 
energy system for an industrial park connecting with 
power grid as the research case, as shown in Fig. 1. The 
system has electric demand and cooling demand. The 
cooling demand is carried by three cold sources: electric 
chillers, absorption chillers and water storage system. 
The electric demand is shared by four power sources: PV 
system, internal combustion engine, storage battery and 
grid. Water storage and battery play the dual role of 
source and load at the same time. 

2.1 Objective function 

In this paper, the two-stage compensated stochastic 
programming model is used to describe the whole 
optimization problem under uncertain design boundary 
conditions[8], and Eq. (1) is the objective function of the 
model. The annualized initial investment costs (a: 
including initial investment of discrete equipment and 
continuous equipment), operating costs (b: gas purchase 
cost; c: power purchase cost), and maintenance costs (d: 
fixed maintenance cost; e: variable maintenance cost for 
discrete equipment; f: variable maintenance cost for 
continuous equipment) are considered. 
𝑚𝑖𝑛   𝐶𝐶𝑎𝑝
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2.2 Model constraints 

2.2.1 Energy balance constraints 

Fig. 1. Flow chart of building integrated energy system 
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Eq. (2) describes the power balance constraint and 
Eq. (3) describes the cooling energy balance constraint. 

∑ ∑ 𝑞𝐼𝐶𝐸,𝑚,𝑗,𝑘,𝜏
𝑒𝐽

𝑗
𝑀
𝑚 + ∑ 𝑞𝐶,𝑘,𝜏𝐶⊆(𝑃𝑉,𝑔𝑟𝑖𝑑) + 𝑞𝐸𝑆,𝑘,𝜏

𝑜𝑢𝑡

≥ 𝑓𝑘
𝑒 ⋅ 𝐿𝑘,𝜏

𝑒
+ 𝑞𝐸𝑆,𝑘,𝜏

𝑖𝑛 + ∑ ∑ 𝑝𝐶𝐶,𝑚,𝑗,𝑘,𝜏
𝐽
𝑗

𝑀
𝑚 (2)

∑ ∑ 𝑞𝐶𝐶,𝑚,𝑗,𝑘,𝜏
𝐽
𝑗

𝑀
𝑚 + 𝑞𝐴𝐶,𝑘,𝜏 + 𝑞𝑊𝑆,𝑘,𝜏

𝑜𝑢𝑡

≥ 𝑓𝑘
𝑐 ⋅ 𝐿𝑘,𝜏

𝑐
+ 𝑞𝑊𝑆,𝑘,𝜏

𝑖𝑛 (3)

In Eqs. (2)-(3), the terms 𝐿𝜏
𝑒

 and 𝐿𝑘,𝜏
𝑐

denote 
electric demand and cooling demand at time step 𝜏 in 

scenario 𝑘, and the terms 𝐽𝑘
𝑑𝑒 and 𝐽𝑘

𝑑𝑐 represent the
scaling factor for electric load and cooling load, 
respectively. 

2.3 Operation constraints 

The operating constraints for internal combustion 
engines, absorption chillers, centrifugal chillers and 
photovoltaic plants under each typical scenario 𝑘 are 
shown as follows: 

{

𝑞𝐼𝐶𝐸,𝑚,𝑗,𝑘,𝜏
𝑒 = 𝑝𝐼𝐶𝐸,𝑚,𝑗,𝑘,𝜏 ⋅ 𝜂𝐼𝐶𝐸,𝑚,𝑗,𝑘,𝜏

𝑒

𝑞𝐼𝐶𝐸,𝑚,𝑗,𝑘,𝜏
ℎ = 𝑞𝐼𝐶𝐸,𝑚,𝑗,𝑘,𝜏

𝑒 ⋅ 𝜌𝑚

𝑏𝑖𝑛𝐼𝐶𝐸,𝑚,𝑗,𝑘,𝜏 ⋅ 𝜔 ⋅ 𝐶𝑎𝐼𝐶𝐸,𝑚 ≤ 𝑞𝐼𝐶𝐸,𝑚,𝑗,𝑘,𝜏
𝑒 ≤ 𝐶𝑎𝐼𝐶𝐸,𝑚

(4) 

{
𝑞𝐴𝐶,𝑘,𝜏 = ∑ ∑ 𝑞𝐼𝐶𝐸,𝑚,𝑗,𝑘,𝜏

ℎ ⋅ 𝜂𝐴𝐶
𝐽
𝑗

𝑀
𝑚

𝑏𝑖𝑛𝐴𝐶,𝑘,𝜏 ⋅ 𝜔𝐴𝐶 ⋅ 𝐶𝑎𝐴𝐶 ≤ 𝑞𝐴𝐶,𝑘,𝜏 ≤ 𝐶𝑎𝐴𝐶
(5) 

{
𝑞𝐶𝐶,𝑚,𝑗,𝑘,𝜏 = 𝑝𝐶𝐶,𝑚,𝑗,𝑘,𝜏 ⋅ 𝜂𝐶𝐶,𝑚,𝑗,𝑘,𝜏
𝑏𝑖𝑛𝐶𝐶,𝑚,𝑗,𝑘,𝜏 ⋅ 𝜔 ⋅ 𝐶𝑎𝐶𝐶,𝑚 ≤ 𝑞𝐶𝐶,𝑚,𝑗,𝑘,𝜏 ≤ 𝐶𝑎𝐶𝐶,𝑚

(6) 

{
𝑞𝑝𝑣,𝑘,𝜏 ≤

𝐽𝑘
𝑝𝑣
⋅𝐶𝑎𝑝𝑣⋅𝑞𝑝𝑣,𝑘,𝜏

1000

𝐶𝑎𝑃𝑉 ≤ 𝐴
𝑟𝑜𝑜𝑓

(7) 

In Eqs. (4)-(6), the term 𝑏𝑖𝑛 is a binary variable to 
constrain the start/stop state of each device In. Eq. (7), 

𝐽𝑘
𝑝𝑣

is the scaling factor for PV power generation. 

2.4 Storage constraints 

The energy balance of the storage battery system 
under each typical scenario 𝑘  meets the following 
constraints: 

{

𝐸𝐸𝑆,𝑘,𝜏 = (1 − 𝜀) ⋅ 𝐸𝐸𝑆,𝑘,𝜏−1 + 𝑞𝐸𝑆,𝑘,𝜏
𝑖𝑛 ⋅ 𝜂𝐸𝑆

𝑖𝑛 −
𝑞𝐸𝑆,𝑘,𝜏
𝑜𝑢𝑡

𝜂𝐸𝑆
𝑜𝑢𝑡

𝑞𝐸𝑆,𝑘,𝜏
𝑖𝑛 ≤ 𝑞̂𝐸𝑆

𝑖𝑛

𝑞𝐸𝑆,𝑘,𝜏
𝑜𝑢𝑡 ≤ 𝑞̂𝐸𝑆

𝑜𝑢𝑡

𝑆𝑂𝐶𝐸𝑆,𝑘,𝜏 =
𝐸𝐸𝑆,𝑘,𝜏

𝐶𝑎𝐸𝑆

𝑆𝑂𝐶𝐸𝑆 ≤ 𝑆𝑂𝐶𝐸𝑆,𝑘,𝜏 ≤ 𝑆𝑂𝐶𝐸𝑆

(8) 

In Eq. (8), the terms 𝜀, 𝜂𝐸𝑆
𝑖𝑛，and 𝜂𝐸𝑆

𝑜𝑢𝑡  represent
the self-discharging losses, the charging, and the 

discharging efficiencies of storage battery, respectively. 
Note that the charging and discharging power of storage 

battery should be less than 𝑞̂𝐸𝑆
𝑖𝑛  and 𝑞̂𝐸𝑆

𝑜𝑢𝑡, respectively.
The term 𝑆𝑂𝐶𝐸𝑆,𝜏  indicates the battery charge state, 

which is generally between the upper limit 𝑆𝑂𝐶𝐸𝑆 and 
the lower limit 𝑆𝑂𝐶𝐸𝑆 . The energy balance of water 
storage system is similar to that of storage battery 
system, which will not be repeated here. 

3. PROBABILISTIC SCENARIOS GENERATION AND
REDUCTION

In view of the periodic fluctuation characteristics of
solar radiation patters and load curves, this paper adopts 
the clustering method to achieve the double reduction 
from the stochastic annual scenario set to the typical 
annual scenario set and from the typical annual scenario 
set to the typical daily scenario set. For the stochastic 
annual scenario set of cooling load and renewable 
energy power generation, this paper obtains it by Monte 
Carlo simulation method[9]. For electric load, it is 
difficult to obtain a set containing a mass of stochastic 
scenarios from the mechanism level. Therefore, this 
paper ignores the uncertainty of electric load and 
focuses on the uncertainty of cooling load and renewable 
energy power generation. 

3.1 Probabilistic scenarios generation and reduction 
process 

The set of stochastic annual scenarios with 
uncertainty is obtained by 1500 Monte Carlo simulations. 
Such high-dimensional data is difficult to be directly used 
as the feature vector for clustering, and currently 
clustering based on eigenvalues is a common method to 
reduce the dimension of high-dimensional data[10]. In 
this paper, the feature matrix of stochastic annual 
scenarios is constructed based on the mean, peak value, 
and information entropy which contains information on 
the kurtosis, skewness, and variance of the probability 
distribution. After obtaining the typical annual scenarios, 
this paper uses the method in reference [11] to directly 

Fig. 2. Probabilistic scenario generation and reduction 
flowchart  
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take the hourly time series of daily load and daily solar 
radiation pattern as the feature matrix and perform 
scenario reduction to obtain typical daily scenarios. The 
specific process is shown in Fig. 2: 

3.2 Input boundary of stochastic programming model 

Through two scenario reductions, a low-dimensional 
set of typical annual scenarios as well as a set of typical 
daily scenarios can finally be obtained, and some of the 
clustering results are shown in Figs. 3-5. Three types of 
information can be obtained from the reduction process 
of the stochastic annual scenario set: (1) 20 typical 
annual scenarios, as shown in the dotted line example in 
Fig. 3; (2) The number of samples or occurrence 
probability for each typical annual scenario, as shown in 
the solid line example in Fig. 3, for instance, the number 
of samples is 90, corresponding to the occurrence 
probability value of 90/1500=6%; (3) The scaling factor 
for each typical annual scenario, which is the ratio of the 
average cumulative value of the solid line to the 
cumulative value of the dashed line in Fig. 3. Based on 
the 20 typical annual scenarios, further clustering can be 
done to obtain the same three types of information for 
typical daily scenarios. The typical daily load scenarios 
are shown in Fig. 4, and the typical daily photovoltaic 
power generation scenarios are shown in Fig. 5. The 
input boundaries of the stochastic programming model 
are the typical daily curves shown in Figs. 3-5, the 
occurrence probability of each typical annual scenario 
and the scaling factors. 

4. CASE STUDY AND RESULTS
Taking the building integrated energy system for an

industrial park as the research case, the typical daily 
scenarios generated above are used as the input 
boundary conditions of the stochastic programming 
model. The optimization and analysis of the stochastic 
programming are carried out with the help of the CPLEX 

solver. Then the optimization results obtained by the 
stochastic programming model are compared with those 
obtained by the deterministic optimization model, and 
the specific analysis results are as follows. 

Table 1 shows the optimal target values and design 
scheme of stochastic optimization model, as well as the 
optimal target values and design scheme of deterministic 
optimization model. Through the comparative analysis, it 
is revealed that the stochastic programming model and 
the deterministic programming model obtain entirely 
different design schemes. Compared with the 
deterministic scheme, the stochastic scheme increases 
the configuration of internal combustion engine and 
correspondingly increases the configuration of 
absorption chiller, so its number of the centrifugal chiller 
is subsequently reduced. In addition, considering the 
uncertainty of future load and photovoltaic power 
generation, the stochastic scheme significantly reduces 
the configuration of photovoltaic system. Since the PV 
configuration is reduced, the stochastic scheme is less 
affected by the source-side uncertainty and thus the 

Fig. 4. Schematic diagram of clustering results of typical 
daily load  

Fig. 5. Schematic diagram of the clustering results of 
typical daily PV power generation  

Fig. 3. Schematic diagram of clustering results of typical 
annual scenarios  
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water storage system capacity is reduced. In accordance 
with the deterministic scheme, stochastic scheme will 
not select battery storage, mainly because: from the 
perspective of hourly energy balance, the water energy 
storage system can adjust the timing relationship 
between the cooling demand and the output of the 
chiller, which equivalently achieves the purpose of 
shaping electrical load curve. Therefore, the water 
storage system has the equivalent energy balance 
function as the battery storage system, while has the 
advantages of low investment and long service life.  

In summary, the stochastic scheme tends to select a 
system with less renewable energy capacity due to 
uncertainty, while increases the investment of 
conventional devices and dependence on the grid. From 
the perspective of system reliability, stochastic scheme is 
a more conservative energy option. 

5. DISCUSSION
The above analysis of the two design schemes is

based on their respective design boundary conditions. 
The stochastic scheme is based on the typical daily 
scenario set, while the deterministic scheme’s design 
boundary is the typical year. In order to further explore 
whether the stochastic scheme really has economic 
advantages in actual operation, the two schemes in Table 
1 are brought into the deterministic optimization model 
respectively. And the optimization objective is changed 
to the annual operation cost so as to construct an 
operation model for both types of design schemes. Then 
1500 stochastic scenarios generated by Monte Carlo 
simulation are brought into the operation model to test 
and analyze the actual operation cost of the two 
schemes. Here it needs to be explained again that the 
design boundary of the stochastic programming model is 
based on the reduced set of typical daily scenarios from 
the set of 1500 stochastic annual scenarios, and the 

latter can be considered as a set containing complete 
uncertainty information, while the set of typical daily 
scenarios is incomplete due to the information loss in the 
process of scenario reduction, and the typical year used 
in the deterministic optimization model is even more 
incomplete. Since both design schemes are obtained 
under incomplete design boundaries, power outage may 
occur when encountering extreme operating conditions 
in stochastic scenarios. In order to ensure that the 
operation optimization model has a feasible solution, the 
energy balance constraints need to be relaxed. The 
relaxation constraints are as follows: 

{

∑ ∑ 𝑞𝐼𝐶𝐸,𝑚,𝑗,𝜏
𝑒𝐽

𝑗
𝑀
𝑚 + ∑ 𝑞𝐶,𝜏𝐶=𝑃𝑉,𝑔𝑟𝑖𝑑 + 𝑞𝐸𝑆,𝜏

𝑜𝑢𝑡 + 𝑞𝑠𝑙,𝜏
𝑒

≥ 𝐿𝜏
𝑒
+ 𝑞𝐸𝑆,𝜏

𝑖𝑛 + ∑ ∑ 𝑝𝐶𝐶,𝑚,𝑗,𝜏
𝐽
𝑗

𝑀
𝑚

∑ ∑ 𝑞𝐶𝐶,𝑚,𝑗,𝜏
𝐽
𝑗

𝑀
𝑚 + 𝑞𝐴𝐶,𝜏 + 𝑞𝑊𝑆,𝜏

𝑜𝑢𝑡 + 𝑞𝑠𝑙,𝜏
𝑐

≥ 𝐿𝜏
𝑐
+ 𝑞𝑊𝑆,𝜏

𝑖𝑛

(9) 

In Eq. (9), the terms 𝑞𝑠𝑙,𝜏
𝑒  and 𝑞𝑠𝑙,𝜏

𝑐  represent the

slack variables of power capacity and cooling capacity 
respectively. When both are greater than zero, it 
indicates that the operation scheme has insufficient 
energy supply. In order to ensure that both take the 
value of zero under normal operating conditions, the 
objective function of operating cost is modified as 
follows: 

𝐶𝑜𝑝𝑒 = ∑ ∑ ∑ 𝑃𝐼𝐶𝐸,𝑚,𝑗,𝜏
𝑇
𝜏

𝐽
𝑗

𝑀
𝑚 ⋅ (1 + 𝛼𝐼𝐶𝐸,𝑚) ⋅ 𝐺𝑝

+∑ 𝑃𝑔𝑟𝑖𝑑,𝜏 ⋅
𝑇
𝜏 𝐸𝑝𝜏 + (𝑞𝑠𝑙,𝜏

𝑐 + 𝑞𝑠𝑙,𝜏
𝑒 ) ⋅ 𝑏𝑖𝑔𝑀 (10)

In Eq. (10), the parameter is a constant, used to 
punish the case of insufficient energy supply. 

The test results of the stochastic scheme and the 
deterministic scheme are plotted in Fig. 6. The red dot in 
Fig. 6(a) is the operating cost under each scenario, and 
the black pentagram is the average operating cost for 
1500 stochastic scenarios. It can be found from Fig. 6(a) 
that the operation cost of deterministic scheme is lower 
than that of stochastic scheme under all test scenarios, 

Table. 1. Comparison of optimization results between stochastic programming model and deterministic programming model 

Model outputs Stochastic scheme Deterministic scheme 

Equivalent annual cost (million CNY/year) 33.04 34.97 

Annualized initial investment (million CNY/year) 6.11 9.40 

Operation cost (million CNY/year) 26.04 24.73 

Maintenance cost (million CNY/year) 0.88 0.84 

Internal combustion engine (kW, number) (1200, 2) - 

Centrifugal chiller (kW, number) (2800, 3) (2800, 4) 

Absorption chiller (kW) 2304 - 

Photovoltaic (kW) 3598 8971 

Battery (kWh) - - 

Water storage (kWh) 27322 39416 



6 

and the average operation cost can be reduced by 9.8%. 
This is mainly due to the larger capacity of the PV system 
and the water storage system in the deterministic 
scheme. Further statistics on the economic indicators 
and test results of the two schemes are shown in Fig. 
6(b). It is found that the stochastic scheme still has an 
economic advantage under the same stochastic annual 
scenarios, as its equivalent annual cost is 2.02% lower 
than that of the deterministic scheme. 

What is more noteworthy is that according to the 
statistics of energy supply reliability, there is no 
operation condition where the relaxation variable is 
greater than zero in both schemes, indicating that both 
stochastic scheme and deterministic scheme can resist 
the uncertainty of stochastic operation scenarios. Even if 
the energy system is optimized based on the design 
boundary with incomplete information, there is no 
shortage of energy supply in the actual operation 
process. This is mainly due to the flexibility of the energy 
storage system, which improves the energy supply 
reliability of the system. 

6. CONCLUSION
In this paper, a stochastic programming model is

formulated for the building energy system planning 
problem under dual source and load uncertainties. 
Facing massive stochastic scenarios, a two-level scenario 
reduction method based on clustering algorithm is 
proposed to obtain the typical annual scenario set and 
typical daily scenario set. Based on the reduced sets of 
typical scenarios, the uncertainty of energy demand and 
renewable energy generation can be taken into account 
on the one hand, and the optimal solution of the 
stochastic programming model is guaranteed on the 
other hand. A comparative analysis between stochastic 
scheme and deterministic scheme verifies the economic 
advantages of the stochastic programming model. In 
addition, it is found that the flexibility of the energy 
storage system can resist a certain degree of load 

forecasting deviation. Therefore, facing the uncertainty 
of energy demand and renewable energy generation, it 
is necessary to focus on the planning of the energy 
storage system to increase energy flexibility, so as to 
improve system’s ability to resist uncertainty. 
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