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ABSTRACT 
Clean energy production is often accompanied by 

battery storage systems that undergo complex 
degradation processes. Incremental capacity and 
differential voltage peaks are traditionally used for 
degradation analysis, but are sensitive to current rate, 
deep degradation, and battery chemistry. To enhance 
the robustness of degradation feature tracking, this 
study proposes a conditional temporal convolutional 
autoencoder. The unsupervised nature of the proposed 
method enables the extraction of degradation related 
features from data that have no peak features. Results 
show that the proposed method can extract features and 
reconstruct battery cycling curves with high fidelity. 
Furthermore, the extracted features are highly 
correlated with peak locations of incremental capacity 
and differential voltage curves. The extracted features 
also have less noise and no missing values compared to 
the peak locations. Prediction of peak locations from 
single encoding achieves mean absolute errors of 0.019 
V and 2.4% state-of-charge. The proposed method is 
therefore potentially useful for battery degradation 
analysis and health assessment. 

Keywords: lithium-ion battery, differential voltage 
analysis, incremental capacity analysis, neural network, 
unsupervised learning 

NONMENCLATURE 

Abbreviations 

ADAM Adaptive moment estimation 
ANN Artificial neural network 
CC Constant current 
CPU Central processing unit 

CTCA 
Conditional temporal convolutional 
autoencoder 

CV Constant voltage 
DCA Deep convolutional autoencoder 
DVA Differential voltage analysis 
GPU Graphic processing unit 
ICA Incremental capacity analysis 
LIB Lithium-ion battery 
MAE Mean absolute error 
RAM Random access memory 
RUL Remaining useful life 
SOC State-of-charge 

1. INTRODUCTION
LIBs have become widely used in consumer

electronics [1, 2], transportation [3, 4], and energy 
storage [1, 5] due to their high energy density, power 
density, and relatively long lifetime. LIBs are considered 
especially promising as an energy storage component in 
clean and sustainable energy production for the 
regulation of uncertain power demands and renewable 
power supplies such as solar and wind [6]. However, LIBs 
degrade after extended usage due to factors including 
the depth of discharge, current load, and external 
temperature [6], which leads to reduced battery 
performance. Therefore, an accurate understanding of 
the degradation mechanism of LIBs is crucial to the 
development of high-performance battery materials and 
sustainable energy systems. 

Previous studies used ICA and DVA to reveal the 
underlying mechanism of battery degradation. In ICA and 
DVA, the peak features of differential cycling curves are 
related to the battery intercalation process and 
correspond to degradation modes such as loss of lithium 
inventory and loss of active materials [7, 8]. Due to the 
peaks’ correlation with degradation modes, many 
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studies also used ICA and DVA for battery health 
estimation [9, 10], degradation mode estimation [7, 11], 
and RUL prediction [12]. However, real battery usage 
often involves deep degradation and high current rate 
cycling, for which ICA and DVA are less effective due to 
the loss of peak features [13]. 

Recent studies have shown that ANNs can accurately 
predict battery capacity from cycling conditions [14] and 
can produce accurate battery health estimation [15], 
degradation mode estimation [11], and RUL prediction 
[16] based on ICA and DVA. However, these studies
involved supervised training of ANNs which requires
target data produced by ICA and DVA. Incorrect or
missing target data caused by these analyses therefore
adversely affect the training process, which makes
supervised ANNs less applicable to cycling data of varied
current rates, degradation levels, and battery
chemistries.

Previous studies have successfully used DCAs for 
unsupervised feature extraction of high-dimensional 
data such as two-dimensional images [17]. We thus 
hypothesize that DCAs can similarly extract degradation 
related features from one-dimensional battery cycling 
curves. Nevertheless, few existing studies have 
investigated the application of DCAs to the extraction of 
degradation features. Therefore, this study proposes a 
CTCA for degradation feature extraction from battery 
cycling data, and analyzes the relationship between 
extracted features and peak locations of incremental 
capacity and differential voltage curves. 

2. BATTERY CYCLING TESTS
To provide data for the training of CTCA, cycling data

of 2025-format batteries assembled in lab experiments 
were collected. The 2025-format batteries were 
assembled from LiNi0.8Co0.1Mn0.1O2 cathodes, lithium 
metal anodes, and electrolytes based on LiPF6, various 
carbonate esters, and other additives. The batteries had 
a nominal capacity of 1.6 mAh, and were cycled at 
different charging and discharging rates between 3 to 4.2 
V using LANHE CT3001A 5V 20mA or 50mA battery 
testing systems. All tests were conducted in a 
temperature-controlled room at 25±1℃. Table 1 lists the 
detailed test setup. The CC charging and discharging 

steps of the tests were used for peak and feature 
extraction. 

3. FEATURE EXTRACTION METHODS

3.1 Conditional Temporal Convolutional Autoencoder 

Based on the lack of known target values, a DCA is 
needed for the feature extraction problem of this study. 
A DCA takes high-dimensional data such as images or 
sequences as input, reduces the data to low-dimensional 
encodings, and reconstructs the original data from these 
encodings. This approach ensures the DCA learns an 
effective low-dimensional representation of the original 
data without using target values. Therefore, a DCA-based 
CTCA is used for cycling curve feature extraction. 

The CTCA is a modification of the conditional 
temporal convolutional encoder-decoder proposed by 
the authors for battery capacity prediction [14]. Fig. 1c 
shows the structure of the CTCA which includes the 
target encoder, condition encoder, and decoder. The 
target encoder extracts the voltage curve features of a 
charging or discharging step using the voltage, sampling 
interval, and current rate as inputs. The condition 
encoder and decoder reconstruct the original voltage 
curve from these features using the sampling interval 
and current rate as inputs. To reconstruct the voltage 
curve with full information of the sampling interval and 
current rate, the condition encoder and decoder layers 
are interconnected. The CTCA uses causal convolution to 

Table 1 Test setup of the 2025-format batteries 

Number of 
batteries 

Charging 
method 

Discharging 
method 

Number of 
CC steps 

63 1 C, CC-CV 1 C, CC 

120,217 
28 1 C, CC 1 C, CC 

75 5 C, CC-CV 0.5 C, CC 

27 6 C, CC 0.5 C, CC 
Fig. 1. The structure of (a) encoder layers, (b) decoder layers, 
and (c) high-level structure of CTCA. 

             

           

        
       

 

   
             

           

                      

 

   

            

             

             

            

             

                          

             

      

                      

               



3 

model the temporal effects of the input conditions. In 
causal convolution, inputs of the convolution (Fig. 1a and 
Fig. 1b) and average-pooling layers (Fig. 1a) are right-
padded with zero values. Similarly, outputs of the up-
sampling layers (Fig. 1b) are right-truncated so that the 
next decoder or linear layers (Fig. 1c) have two inputs of 
equal lengths. The average-pooling size and up-sampling 
size are equal to the convolution window size. 

The CTCA was trained with the charging and 
discharging steps of the 2025-format batteries. Each step 
was down-sampled to less than 1000 samples to improve 
training speed. The steps were randomly split into 
training, validation, and test sets. L2 regularization was 
used and normal-distributed artificial voltage noise was 
added to the input during training to improve model 
generalization. The learning rate was halved when 
evaluation loss plateaus for 5 epochs to improve training. 
The training was performed with TensorFlow on an 
NVIDIA GeForce RTX 2080 Ti GPU with 11 GB RAM and 
an Intel Core i9-10900X CPU with 128 GB RAM. 

Table 2 lists the training parameters of CTCA. The 
validation and test set ratios were chosen to be small due 
to the abundance of data. The number of channels were 
chosen to be small to limit encoding size and prevent 
overfitting. The number of layers and convolution 
window size were chosen to achieve a receptive field of 
1024 samples. Other parameters were selected 
empirically, but a systematic search is out of the scope of 
this paper. 

3.2 Baseline peak extraction method 

Past studies have investigated the tracking of 
differential curve peaks without [18] or with filters [7] 
and the tracking of a single peak using support vector 
regression [8, 9]. However, these studies did not address 
the robustness of multiple peak tracking when some 

peak features are lost to degradation or when peak 
signature changes across different battery chemistries. 
Therefore, this study uses a peak tracking method with 
improved robustness and agnostic of battery chemistry 
to allow for an analysis of the relationship between the 
peaks and CTCA encodings through the entire battery 
life. The method extracts the differential curve peaks by 
using smoothed derivatives and linear sum assignment-
based target tracking. 

First, the derivatives of the capacity-voltage curve of 
a step are calculated. For DVA, the derivatives of 𝑉 with 
respect to 𝑄  is calculated, whereas for ICA, the 
derivatives of 𝑄 with respect to 𝑉 is calculated, where 
𝑉  is the voltage and 𝑄  is accumulative charging or 
discharging capacity. The peak locations of a step are 
then extracted by finding the sample points where a 
zero-crossing of the second derivative and a sufficiently 
large negative value of the third derivative is found, as 
shown in (1), where 𝑥 and 𝑦 are 𝑉 and 𝑄 for DVA 
and 𝑄  and 𝑉  for ICA, respectively, 𝜎 = 1 (charging) 
or 𝜎 = −1 (discharging), 𝑡 is the sample index, 𝑁 is 
the sample count, 𝑡 ∈ [1, 𝑁] , and 𝑇d  is the third 
derivative threshold. 

𝑃′ =

{
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 (1) 

Peaks too close to other peaks are then removed, as 
shown in (2), where 𝑇𝑥 is the peak distance threshold. 

𝑃 = {𝑝𝑗
′ ∈ sorted(𝑃′)|𝑗 = 1 or 𝑝𝑗

′ − 𝑝𝑗−1
′ ≥ 𝑇𝑥} (2) 

The smoothed derivatives are calculated with a half-
window size of 𝑤 by applying (3) recursively. 

d𝑦𝑡

d𝑥𝑡

̂
=

𝑦min(𝑡+𝑤,𝑁)−𝑦max(𝑡−𝑤,1)

𝑥min(𝑡+𝑤,𝑁)−𝑥max(𝑡−𝑤,1)
(3) 

The method then tracks the peaks of the cycling 
steps using linear sum assignment with a heuristic cost 
matrix considering that the peak locations almost always 
change gradually during degradation. This process 
produces several traces, each containing the peaks that 
are most likely the same physical peak. For peak 𝑝𝑘,𝑗  at 

cycling step 𝑘, the cost matrix 𝑀 satisfies (4), where 
�̂�𝑖  is the smoothed peak location of trace 𝑖, 𝑘last,𝑖  is 
the last step number of trace 𝑖 , 𝐿𝑖  is the number of 
peaks in trace 𝑖, and 𝛼 and 𝛽 are penalty multipliers 
for non-continuous or short traces. This cost matrix 
ensures that peaks are assigned to the closest trace in 
most cases and the traces are as continuous as possible. 

𝑀 = {𝑚𝑗,𝑖} = {𝑝𝑘,𝑗 − �̂�𝑖 + 𝛼(𝑘 − 𝑘last,𝑖) + 𝛽/𝐿𝑖} (4) 

Table 2 Training parameters of CTCA 

Parameter Value 

Dataset 

Batch size 64 

Training set ratio 80% 

Validation set ratio 10% 

Test set ratio 10% 

CTCA 

Number of channels 16 

Number of layers 5 

Convolution window size 4 

L2 regularization 1×10-6

Artificial voltage noise (V) 𝒩(0, 0.01) 

Training 

Method ADAM 

Learning rate 0.005–0.0001

1st and 2nd moment decay 0.5, 0.999 

Loss function MAE 

Epochs 100 
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Algorithm 1 and Table 3 show the pseudo-code and 
the empirically chosen parameters of the method. 

4. RESULTS AND DISCUSSION

4.1 Autoencoder accuracy 

The CTCA performs well on all cycling data of this 
study. Fig. 2 shows battery voltage curves at different 
current rates in the test set and the corresponding 
voltage curves reconstructed by CTCA. The 
reconstruction error is generally low and important 
features such as voltage platforms are preserved. The 
error slightly increases at the start and end of some 
curves and in high-rate steps, but these locations usually 
do not contain peak features, so the error’s influence on 
the CTCA encodings’ relationship with peaks is minimal. 
Furthermore, the MAE of the CTCA on the test set is 8.5 
mV or about 0.7% of the 3 to 4.2 V interval. This high-
fidelity reconstruction is promising for the correct 
extraction of degradation related features. 

4.2 Comparison of peaks and encodings 

Fig. 3 shows the peaks extracted by the baseline 
method from a 1 C cycling test. The method correctly 

extracts the main peaks in the curves and ignores small 
peaks caused by measurement noise. However, the 
differential curves lose peak features after degradation. 
For example, step 4 has two d𝑉/d𝑄 peaks (Fig. 3a) and 
three d𝑄/d𝑉  peaks (Fig. 3c) and step 13 has three 
d𝑉/d𝑄  peaks (Fig. 3b) and three d𝑄/d𝑉  peaks (Fig. 
3d). In contrast, step 454 only has one d𝑄/d𝑉  peak 
(Fig. 3c) and step 463 loses all peak features (Fig. 3d). The 
baseline method therefore becomes less reliable after 
battery degradation. 

The baseline peak extraction method and the CTCA 
was then applied to the full cycling tests. For most of the 
cycles, the baseline method can extract the peaks of 
d𝑄/d𝑉 (Fig. 4a and Fig. 4c) and d𝑉/d𝑄 (Fig. 4b) curves 
correctly. However, when batteries are degraded, the 
baseline method is less reliable as the differential curves 

Table 3 Parameters of the baseline method 

Parameter Value 

3rd derivative threshold 𝑇d 1×10-2

Peak distance threshold 𝑇𝑥  5×10-2 
1st derivative half-window size 𝑤 8 
2nd derivative half-window size 𝑤 8 
3rd derivative half-window size 𝑤 16 
Non-continuity penalty 𝛼 5×10-2 
Low-length penalty 𝛽 5×10-1 
Peak smoothing rate 𝛾 0.9 

Fig. 2. Real voltage curves and CTCA reconstruction at different 
current rates. 

Algorithm 1 Peak curve extraction 

Inputs: 𝑁𝑠: number of steps, 𝑚𝑘: number of peaks at step 
𝑘 , 𝑘 ∈ [1, 𝑁𝑠] , 𝑝𝑘,𝑗 : location of peak 𝑗  at step 𝑘 , 𝑗 ∈

[1,𝑚𝑘], and 𝛾: peak smoothing rate. 
Outputs: 𝑁𝑐: number of traces, 𝐾𝑖: step indices of trace 𝑖, 
𝑖 ∈ [1, 𝑁𝑐], and 𝑃𝑖: peak locations of trace 𝑖. 
1: 𝑁𝑐 ∶= 0 
2: foreach 𝑘 ∈ [1, 𝑁𝑠] do 
3: Calculate the cost matrix 𝑀. 
4: Solve the linear sum assignment problem represented 

by 𝑀 to obtain zero or one peak index 𝑗𝑖  assigned 
to each trace 𝑖. 

5: // Assigned peaks 
6: foreach 𝑖 ∈ [1, 𝑁𝑐] do 
7: if 𝑗𝑖  exists then 
8: �̂�𝑖 ∶= 𝛾�̂�𝑖 + (1 − 𝛾)𝑝𝑘,𝑗𝑖 , 𝑘last,𝑖 ∶= 𝑘 , 𝐿𝑖 ∶= 𝐿𝑖 +

1, 𝐾𝑖 ∶= (𝐾𝑖 𝑘), and 𝑃𝑖 ∶= (𝑃𝑖 𝑝𝑘,𝑗𝑖)

9: end if 
10: end for 
11: // Unassigned peaks 
12: foreach 𝑗 ∈ [1,𝑚𝑘] do 
13: if 𝑗 ∉ {𝑗𝑖} then 
14: 𝑁𝑐 ∶= 𝑁𝑐 + 1, �̂�𝑁𝑐 ∶= 𝑝𝑘,𝑗 , 𝑘last,𝑁𝑐 ∶= 𝑘 , 𝐿𝑁𝑐 ∶=

1, 𝐾𝑁𝑐 ∶= (𝑘), and 𝑃𝑁𝑐 ∶= (𝑝𝑘,𝑗)

15: end if 
16: end for 
17: end for 
18: Remove 𝐾𝑖  𝑎𝑛𝑑 𝑃𝑖  if the length is lower than 𝑁𝑠/4 

to filter out unusable traces. 
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lose features. The baseline method also fails to extract 
usable d𝑉/d𝑄 peaks from a battery charged at 5 C (Fig. 
4c) due to the lack of peak features. These feature losses 
preclude the training of supervised ANNs based on 
known target values. In contrast, the CTCA produces 
encodings regardless of the degradation level and 
current rate. These encodings can then be related to the 
peaks and used for reliable degradation feature 
extraction. 

To explore the relationship between the peaks and 
CTCA encodings, for each peak, a closest encoding was 
found by calculating the 𝑅2  (coefficient of 
determination) of linear regression between the 
encodings and the peak. The encoding with the highest 
𝑅2  value was considered the closest and fitted with 
linear regression to predict the peak. For d𝑉/d𝑄 peaks, 
the linear regression was performed with the SOC values 
corresponding to the peak locations according to (5) so 
that the regression is less affected by the peak’s 
correlation with capacity. In (5), SOC𝑡  is the SOC at 
sample 𝑡 , 𝐶𝑡  is the accumulative charging or 
discharging capacity at sample 𝑡 , and 𝐶  is the total 
charging or discharging capacity. 

SOC𝑡 = {

𝐶𝑡

𝐶
if charging,

1 −
𝐶𝑡

𝐶
if discharging.

(5) 

Fig. 4 compares the peaks extracted by the baseline 
method and the corresponding prediction by encodings. 
The prediction shows a surprising resemblance to actual 
peak traces, does not have missing values, and has less 
noise compared to the peak traces. In Fig. 4c, the 
encodings also capture the long-term turbulence of the 

peaks near 4.0 V before step 100. The MAEs between the 
peaks and the prediction by encodings of all batteries are 
0.019 V for d𝑄/d𝑉  peaks and 2.4% SOC for d𝑉/d𝑄 
peaks, which are small compared to the voltage and SOC 
ranges. These results show that the CTCA can produce 
encodings related to the peaks without supervised 
training, and these encodings can be more reliable in the 
analysis of degradation and estimation of battery health. 

In Fig. 4a, the d𝑄/d𝑉 peaks are initially near 4.0 V 
and 3.7 V, but an increase in polarization during aging 
causes the peak locations to diverge from these two 
voltage values. Nevertheless, the distance between the 
peaks decreases in both charging and discharging curves. 
Because the peak locations of the half-cell without 
polarization should stay relatively constant during aging, 
this seems to suggest that the polarization increases 
more during discharging at higher voltage and charging 
at lower voltage compared to discharging at lower 
voltage and charging at higher voltage. In Fig. 4c, the 

Fig. 3. Peaks extracted by the baseline method from the (a, b) 
d𝑉/d𝑄 and (c, d) d𝑄/d𝑉 curves of battery A12041 cycled at 
1 C. 

Fig. 4. Peaks extracted using the baseline method and the 
closest prediction from single encoding using linear regression. 
(a) d𝑄/d𝑉  and (b) d𝑉/d𝑄  peaks of battery A12041 (1 C 
cycling) and (c) d𝑄/d𝑉  peaks of battery EE1116 (5 C
charging, 0.5 C discharging).
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discharging d𝑄/d𝑉 peak initially near 4.0 V decreases 
faster in the predicted part after step 120 than the 
charging peak increases, which is consistent with this 
observation. In Fig. 4b, the d𝑉/d𝑄 peaks slightly shift 
towards higher SOC during aging, possibly because the 
increase of polarization causes charging to be cut off 
earlier at high voltage than discharging is cut off at low 
voltage. 

5. CONCLUSION
This paper proposes a CTCA for the extraction of

degradation related features from battery cycling data. 
The extracted CTCA encodings highly resemble the peak 
locations of incremental capacity and differential voltage 
curves, but are more stable and less noisy compared to 
the peaks. Prediction of peak locations from single 
encoding achieves MAEs of 0.019 V and 2.4% SOC. 
Because the features of battery cycling curves often 
reflect the evolution of battery degradation modes, an 
accurate extraction of these features allows a precise 
analysis of battery degradation, which can in turn enable 
the development of higher-performance battery 
materials and more sustainable energy systems. Future 
work should therefore investigate the relationship 
between the CTCA encodings and measured battery 
degradation modes and explore the assessment of 
battery health using these encodings. 

ACKNOWLEDGEMENT 
We thank Professor Jingjing Li for helpful 

suggestions. 

REFERENCES 
[1] Stroe DI, Swierczynski M, Stroe AI, Kaer S, Teodorescu
R. Lithium-ion battery power degradation modelling by
electrochemical impedance spectroscopy. IET Renew
Power Gen, 2022;11(9):1136-1141.
[2] Kabir MM, Demirocak DE. Degradation mechanisms
in Li-ion batteries: a state-of-the-art review. Int J Energ
Res, 2017;41:1963-1989.
[3] Pastor-Fernández C, Yu TF, Widanage WD, Marco J.
Critical review of non-invasive diagnosis techniques for
quantification of degradation modes in lithium-ion
batteries. Renew Sust Energ Rev, 2019;109:138-159.
[4] Tian H, Qin P, Li K, Zhao Z. A review of the state of
health for lithium-ion batteries: Research status and
suggestions. J Clean Prod 2020;261:120813.
[5] Xu B, Oudalov A, Ulbig A, Andersson G, Kirschen DS.
Modeling of lithium-ion battery degradation for cell life
assessment. IEEE T Smart Grid 2016:9(2):1131-1140.
[6] Ahmadian A, Sedghi M, Elkamel A, Fowler M, Golkar

MA. Plug-in electric vehicle batteries degradation 
modeling for smart grid studies: Review, assessment and 
conceptual framework. Renew Sust Energ Rev 2018;81:
2609-2624. 
[7] Chen J, Marlow MN, Jiang Q, Wu B. Peak-tracking
method to quantify degradation modes in lithium-ion
batteries via differential voltage and incremental
capacity. J Energy Storage 2022;45:103669.
[8] Weng C, Feng X, Sun J, Peng H. State-of-health
monitoring of lithium-ion battery modules and packs via
incremental capacity peak tracking. Appl Energ 2016;
180:360-368.
[9] Weng C, Cui Y, Sun J, Peng H. On-board state of health
monitoring of lithium-ion batteries using incremental
capacity analysis with support vector regression. J Power
Sources 2013;235:36-44.
[10] Li X, Yuan C, Wang Z. State of health estimation for
Li-ion battery via partial incremental capacity analysis
based on support vector regression. Energy 2020;203:
117852.
[11] Lee S, Kim Y. Li-ion battery electrode health
diagnostics using machine learning. Amer Contr Conf
2020:1137-1142.
[12] Li X, Wang Z, Yan J. Prognostic health condition for
lithium battery using the partial incremental capacity
and Gaussian process regression. J Power Sources 2019;
421:56-67.
[13] Fly A, Chen R. Rate dependency of incremental
capacity analysis (dQ/dV) as a diagnostic tool for lithium-
ion batteries. J Energy Storage 2020;29:101329.
[14] Wang J, Xiang Y. Fast modeling of the capacity
degradation of lithium-ion batteries via a conditional
temporal convolutional encoder-decoder. IEEE T Transp
Electr, in press.
[15] She C, Wang Z, Sun F, Liu P, Zhang L. Battery aging
assessment for real-world electric buses based on
incremental capacity analysis and radial basis function
neural network. IEEE T Ind Inform 2020;16(5):3345-3354.
[16] Zhang S, Zhai B, Guo X, Wang K, Peng N, Zhang X.
Synchronous estimation of state of health and remaining
useful lifetime for lithium-ion battery using the
incremental capacity and artificial neural networks. J
Energy Storage 2019;26:100951.
[17] Cheng Z, Sun H, Takeuchi M, Katto J. Deep
convolutional autoencoder-based lossy image
compression. Picture Coding Symposium 2018:253-257.
[18] Maures M, Capitaine A, Delétage JY, Vinassa JM,
Briat O. Lithium-ion battery SOH estimation based on
incremental capacity peak tracking at several current
levels for online application. Microelectron Reliab 2020;
114:113798.


