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ABSTRACT 
 This paper presents a pipeline for creating digital 

twins of building energy systems, which is shared as an 
open test-environment for controller benchmarking. The 
digital twin is calibrated based on an extensive dataset 
including a wide variety of data with fine temporal 
resolutions. The comprehensive list of controllable 
variables, the temporal resolution of measurements, and 
the real-time capabilities of the digital twin distinguish 
this work from the existing test environments. A case 
study is also provided to exemplify the use of this open 
environment for benchmarking the performance of 
building automation and control systems. 
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NONMENCLATURE 

Abbreviations 

ASHRAE 
American Society of Heating, 
Refrigerating and Air-Conditioning 
Engineers 

BACS 
Building Automation and Control 
Systems 

BEM Building Energy Model 
DHW Domestic Hot Water 
EV Electric Vehicle 
FMU Functional Mockup Unit 
HP Heat pump 

HVAC 
Heating, Ventilation, and Air-
Conditioning 

KPI Key Performance Indicator 
IEQ Indoor Environmental Quality 
MPC Model Predictive Controller 
PV Photovoltaics 
RBC Rule-Based Controller 

1. INTRODUCTION
More than 80% of homeowners personally program

their room thermostats, a practice which often leads to 
energy waste [1]. A solution is to automate the process 
of adjusting indoor environmental conditions with 
Building Automation and Control Systems (BACS). BACS 
are equipment, software, and services that allow 
monitoring and operation of indoor environments. One 
application of BACS is the optimal control of Heating, 
Ventilation, and Air-Conditioning (HVAC) systems while 
satisfying Indoor Environmental Quality (IEQ). Given that 
HVAC systems are the dominant consumers of energy in 
buildings [2], the energy saving potentials of BACS are 
well-documented. BACS have displayed promising 
results in load management, where dynamic tariffs are 
present [3]. Furthermore, incorporating model 
predictive control into BACS has shown the potential to 
save energy while increasing comfort for occupants [4]. 
Aside from energy performance optimization, BACS are 
suitable for performing system diagnostics and anomaly 
detection during operation [5]. 

Depending on the end-use, BACS have various 
objectives that span from economic (e.g. operation cost) 
to environmental (e.g. CO2 emissions) performances, as 
well as restrictions based on social constraints (e.g. 
thermal comfort). Consequently, numerous evaluation 
metrics are described in the literature [2], which report a 
wide range of improvements on buildings' economic and 
environmental performances. As of 2022, lack of 
adequate benchmarking datasets and platforms 
continues to be a major challenge for evaluating the 
performance of BACS [6]. However, valuable 
contributions have greatly facilitated the reproducibility 
of experiments and evaluations. Energym [6], BEOPTEST 
[7], and CityLearn [8], provide reference buildings, open-
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source environments, and Key Performance Indicators 
(KPIs) for benchmarking BACS' performance. 

Despite the major advancements in benchmarking 
BACS' performance, test environments are still scarce 
and existing models lack the full range of variables that 
affect HVAC performance. For example, the existing test 
environments do not offer the option to override the 
shading system or allow for window airing. In addition, 
current test-environments suffice to a ten-minutes 
sampling rate, and often only cover portions of a full 
year. Yet, the temporal resolution of a dataset directly 
affects the assessment of system's performance. 
Previous studies have argued that temporal aggregation 
of measurements can distort the load shape and lead to 
biased assumptions about BACS' performance [9]. 
Studies have also shown that using a deterministic 
operation scenario is insufficient for benchmarking 
controller performance, as it does not encompass the full 
range of uncertainties that are associated with 
occupants' behavior [10]. Hence, it is imperative to 
enrich the existing list of open test environments for 
more rigorous benchmarking of BACS. 

Building on previous research, this study resorts to 
long-term measurements with fine temporal resolutions 
for developing a high-fidelity building energy model 
(BEM) labelled as a "Digital Twin". Here, the term digital 
twin refers to a virtual replica of the physical system, 
which accurately mimics its components and operation. 
The objective of using a digital twin is to facilitate 
benchmarking the performance of controllers while 
gathering insights into system performance. As an 
original contribution, we propose a pipeline for creating 
integrated BEM-control workflows and describe the 
iterative process of calibrating BEMs with minimum 
computation cost. The study also introduces BAC-Bench, 
an open test environment that forms the core of the 
digital twin with options to run assessments offline or in 
real-time. BAC-Bench allows researchers to benchmark 
the performance of new controllers against that of a 
baseline controller. BAC-Bench also enables researchers 
to assess the reliability of their controllers amid 
uncertainties in climate or building operation. A real-
world application of BAC-Bench is demonstrated through 
a case study of benchmarking three controllers with 
dissimilar strategies and objectives.  

2. MATERIAL AND METHODS

This section first presents the workflow for creating
a high-fidelity BEM, hereafter referred to as the digital 
twin. The section also describes the physical setup, on 

which the BAC-Bench test environment is based. Then 
the setup of a field experiment is briefly summarized, 
and the digital twin's application for investigating the 
impacts of alternative controllers is discussed in detail. 

2.1 Model setup and calibration 

In its core, BAC-Bench [11] is an EnergyPlus model of 
the Urban Mining and Recycling (UMAR) unit at NEST in 
Empa [12]. The EnergyPlus model is wrapped into a 
functional mockup unit (FMU) to enable co-simulation. 
The UMAR unit is a residential apartment hosting two 
occupants. The apartment consists of a living room, two 
bedrooms, two bathrooms, as well as a storage cell (Fig. 
1). Air conditioning at the UMAR unit is though ceiling 
radiant panels, which are supplied by heat exchangers 
that are connected to district heating and cooling 
networks. Measurements at UMAR are conducted at 
various nodes and registered in one-minute intervals.  

Benchmarking the performance of BACS requires 
high-fidelity BEMs. Thus, model calibration and 
modularity play a vital role in the flexibility of the BEM as 
well as the reliability of the benchmarking process [13]. 
Calibration of BEMs often requires hundreds to 

Fig. 1. The case-study unit (UMAR) marked in white (top), 
and its floor plan (bottom) © Zooey Braun, Stuttgart. 



thousands of simulations depending on the number of 
variables. Furthermore, there is no guarantee of 
optimality in many cases, particularly when numerous 
variables are calibrated simultaneously. 

In this study, we adopt the calibration strategy 
presented in [14] with small modifications as described 
in the following. Instead of using Genetic Algorithm, we 
opt for Subset Simulation to reduce the computation 
time for optimizing the inputs and calibrating the BEM 
[15]. Subset Simulation has proven highly effective for 
multivariate calibration, while minimizing the compute 
through efficient sampling from posterior distributions. 
Given the wide range of variables that simultaneously 
affect Energy consumption and IEQ, the proposed 
pipeline executes calibration at four consecutive stages 
(Fig. 2). 

First, typical daily occupancy profiles are created for the 
entire year through clustering electricity and water 
consumption measurements. Further details on the 
clusters and representative profiles are available in [9]. 
Second, free floating instances are extracted from the 
dataset and utilized for calibrating model inputs based 
on IEQ measurements. At this stage, only construction 
characteristics of the envelope (e.g., thermal 
conductivity, thermal mass, g-value, infiltration, etc.) are 
calibrated. Third, air-conditioned periods are extracted 
from the dataset and utilized for calibrating model inputs 
based on energy consumption and IEQ measurements. 
At the third stage, only the HVAC system properties (e.g., 
thermal conductivity of radiant ceiling panels, length of 
fluid pipes, system's throttling range, etc.) are calibrated. 
Forth, model inputs for the full year are calibrated based 
on energy consumption and IEQ measurements. The 
final stage of the process focuses on the occupancy 
profiles by executing the calibration process for each day 
of the year. 

2.2 Experiment setup 

The calibrated digital twin is then utilized to evaluate 
a model predictive controller in a field experiment, 
during which all common electrical loads were controlled 
to minimize equivalent carbon emission due to electricity 
imported from the power grid. The controller was 
implemented on top of a standard BACS [16]. Optimal 
decisions were obtained combining models of the 
physical system and forecasts. Specific to the HVAC, 
continuous controller decisions were executed by 
modulating the duty cycle of valve opening in individual 
rooms. Note that the thermal power into individual 
rooms were not measured but calculated by dividing the 
total power of the entire unit by the size of inlet pipe. The 
interested reader is referred to [17] for a detailed 
description of the experimental setup. Given that the 
controller's sampling time differs from the simulation 
timestep, timely communication between the physical 
system (UMAR), digital twin (BAC-Bench), controller, and 
miscellaneous systems (EV, PV, batteries, etc.) is 
imperative. Figure 3 shows how the MOSAIK tool 
manages communication between different FMUs and 
synchronizes the physical and digital systems, a feature 
that is necessary for hardware-in-the-loop simulations. 
Online deployment of BAC-Bench is currently at the 
testing and validation phase. 

3. RESULTS
This section is composed of two parts. First, the

accuracy of the digital twin is assessed and compared 
with the existing recommendations. Second, 
comparisons with alternative controllers of the field 
experiment are reported. 

3.1 Calibration results 

The BEM is calibrated on one-minute measurements 
from the entire year of 2020, covering the indoor air 

Fig. 2. The workflow for calibrating the BEM. 

Fig. 3. Synchronization mechanism between BAC-Bench and 
the other components for real-time operation.  



temperature in Rooms 1, 2, and 3, as well as the heating 
and cooling energy consumptions for the entire unit. The 
accuracy of the calibrated model is reported in Table 1. 
Since there are no standards and thresholds for 
evaluating the calibration of one-minute measurements, 
the performance values reported in Table 1 are based on 
one-minute data loggings that are resampled to hourly 
temporal resolution. 

Table 1. Calibration error of the BEM. 

Room1 
temp. 

Room2 
temp. 

Room3 
temp. 

Heating 
energy 

Cooling 
energy 

nMBE -0.002 0.003 -0.003 -0.03 0.09 

CVRMSE 0.019 0.035 0.019 2.4 3.7 

R2 97.51 96.87 98.42 92.1 87.4 

We also contrast the measurements of indoor air 
temperature and energy consumption against those of 
the simulation for the experiment period. Fig. 4 
compares the measured and simulated indoor air 
temperature as well as the heating energy consumption. 
For brevity, we only plot the calibration results of indoor 
air temperature for Room 3, which will be further 
discussed in the next section. The simulated energy 

consumption in one-minute temporal resolution 
occasionally shows large deviations from the 
measurements. This is because measurements are 
collected at a heat exchanger that is placed between the 
unit and the backbone, thus logging the energy 
consumption with some time lag. However, the observed 
deviations at one-minute temporal resolution does not 
invalidate the accuracy of the model. Evaluating the 
hourly data (resampled from one-minute 
measurements) as shown in Table 1 reaffirms that the 
calibration error is considerably lower than ASHRAE 
recommendations [18]. 

3.2 Benchmarking the experiment 

Among the benefits of a digital twin is to validate the 
suitability of a technology by preserving an experiment's 
settings while manipulating one or more features. Given 
that this study focuses on controllers' performance, the 
experiment is replicated with identical boundary 
conditions and dissimilar control strategies. Table 2 
details the characteristics of three controllers (one rule-
based controller and two predictive controllers) with 
dissimilar strategies, objectives, and system 
configurations. Controllers 1 and 3 are borrowed from a 
previous study [17] that highlights the potential of BACS 
for reducing carbon emissions. Controller 2 is designed 
to share some characteristics with the other two 
controllers. Controllers 1 and 2 have identical system 
components, while controllers 2 and 3 both opt for a 
predictive control strategy. All three controllers are 
constrained by thermal comfort bounds. 

Table 2. Characteristics of the controllers tested in this study 

ID 
Control 
strategy 

Objective Constraints 
System 

components 

1 RBC N/A 
Thermal 
comfort 

HVAC 

2 MPC 
Minimize 

energy 
consumption 

Thermal 
comfort 

HVAC 

3 MPC 
Minimize 

carbon 
emissions 

Thermal 
comfort 

HVAC, DHW, 
EV, PV, 
Battery 

In this study, we leverage the potential of the digital 
twin and dig deeper into the performance of BACS by 
analyzing the controllers at room level. The digital twin 
allows us to break down the energy consumption of the 
whole unit by each room. Such spatial granularity of 
measurements is not available from the energy meter 

Fig. 4. Contrasting simulated data against measurements for 
the experiment period. 



that is installed at UMAR and provides new insights into 
controllers' response to building operation. 

It is observed that the performance of controllers 
vary significantly among the three rooms (Fig. 5), which 
can be attributed to the room operation. Room 3 was 
unoccupied during the experiment with the shades 
deployed, thus blocking the solar gains. While 
suppressing the solar gains through a deployed shading 
results in less violations of the upper comfort bound (Fig. 
5, top-left), it comes at the cost of higher heating energy 
consumption (Fig. 5, bottom-left) when compared to 
Room 1.  We also observe an unusual phenomenon when 
studying Room 3, i.e. controller 2 violates the comfort 
bounds more frequently when compared to the other 
two controllers. This observation contradicts the 
performance of controller 2 in Rooms 1 and 2, where it 
outperforms the other two controllers. Plotting the 
indoor air temperature of Room 3 shows that the 
absence of solar gain in the room allows controller 2 to 
keep the indoor air temperature extremely close to the 
lower comfort bound (Fig 6). As a result, controller 2 
occasionally crosses the comfort limits, particularly when 
transitioning between day and night comfort bounds. 
The other two controllers, however, adopt a completely 
different strategy. Controller 1 does not have any 
incentives to minimize the energy consumption, and 

thus, is less prone to cross the lower comfort bound. 
Controller 3 weighs emissions from other components 
such as the PV and battery, and thus, does not keep the 
indoor air temperature close to the lower bound; 
consequently reducing the risks of crossing beyond the 
thermal comfort limits. 

4. CONCLUSIONS
The high-fidelity model in this study labelled as a

"Digital Twin" allows us to benchmark the performance 
of an experiment with identical boundary conditions. 

Fig. 5. Comparison of the three controllers listed in Table 1 In terms of: violation of thermal comfort (top) and cumulative energy 
consumption (bottom). 

Fig. 6. Comparing thermal comfort violations in Room 3. 



This freedom is particularly important, as re-executing an 
experiment on the physical system with a different 
controller and identical climate and operation conditions 
would be impossible. Furthermore, the digital twin 
allows us to explore what-if scenarios, in which the 
controller is exposed to out-of-sample disturbances and 
uncertainties. Digital twin's capability of swapping 
climate and operation conditions on the fly enables us to 
study the robustness of a controller to unseen events. 
Thus, there is a great potential to leverage the 
interoperability of digital twins for designing robust 
controllers. 
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