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ABSTRACT 
 End-users are transiting towards more active, 

integrating new low-carbon (LC) technologies and 
bringing unpredictability to low-voltage (LV) distribution 
networks. Although smart meters have a great potential 
in increasing the observability, they are mostly being 
employed only for billing purposes, leaving many other 
possibilities unexploited, further complicating the many 
analyses required for effective operational planning and 
real-time (RT) operation. Detection of phase 
consumption of end-users is significantly difficult, due 
to the nonlinear relationships between obtained phase 
voltage measurements and aggregated end-user 
consumption. Machine learning (ML) is increasingly 
used for these and similar problems, and therefore, in 
this paper, a neural network (NN) – based model is 
developed to detect end-user consumption in an LV 
distribution network from available voltage 
measurements and aggregated end-user consumption. 
Furthermore, the influence of topology on the output 
values of the model is investigated and a graph neural 
network (GNN) – based model is created that considers 
both the structure and data of the distribution network 
elements. Both models are tested on the real-world LV 
distribution network with more than 150 end-users. The 
results showed the effectiveness of both models in 
determining the distribution of end-user consumption, 
with the GNN-based model showing significantly better 
results. Such a model can help the energy utilities to 
overcome this time-consuming problem and lay a good 

foundation for further analyzes required to enable 
operation and planning of distribution networks. 

Keywords: smart meters, distribution network, phase 
consumption, machine learning, graph neural network  

1. INTRODUCTION
With the integration of low carbon (LC)

technologies and an increasing number of active end-
users, especially prosumers, distribution systems are 
becoming more complex in terms of planning and 
operation. In recent years, the application of machine 
learning (ML) algorithms has significantly increased due 
to their potential in resolving the problems related to 
the number and complexity of the collected data. 

The authors in [1] consider different ML models for 
the forecast of electricity prices and additionally extend 
the current state-of-the-art by considering previously 
unused predictive features. Electricity load was 
forecasted by using the recurrent extreme learning 
machine model in [2]. ML algorithms are also used for 
the detection of unwanted events in a network, e.g., 
detection of faults [3] or power quality disturbances [4]. 
The other potential of ML algorithms is used in the 
detection of energy thefts in smart distribution 
networks using end-users’ consumption patterns [5]. As 
mentioned before, smart distribution networks require 
the processing of a high number of complex data. 
Therefore, it is important to accurately detect the 
needed set of features used in different ML-based 
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predictions [6] but also, to detect false data in smart 
grids so the digital communication and other important 
aspects of the smart distribution networks planning, 
and operation would not be compromised [7]. 

In this paper, we use ML methods for the 
distribution of three-phase connected end-users’ 
consumption among the phases with the application of 
real-world data from smart meters installed with 
customers of the Croatian distribution network. Even 
though phase detection is a well-known problem, it was 
mostly solved only for the single-phase users at the 
substation level or is based on physical devices such as 
PLC [8] or Phasor Measurement Units [9].  

The contributions of this paper are: 

• An NN-based model for the distribution of
end-user phase consumption.

• An extension of the previously developed
model by integrating the distribution
network topology information.

The proposed tool is of great significance to energy 
utilities as any further analysis of the distribution 
network depends on the correct identification of the 
end-user phase connection and consumption among 
phases. The rest of the paper is organized as follows: 
Section II presents the methodology of the proposed 
approach. Section III contains results for both of the 
proposed models, and the conclusions are drawn in 
Section IV. 

2. PROPOSED METHODOLOGY
A significant number of smart meters installed in

the active, smart distribution networks have great 
potential to increase observability, but most smart 
meters are still used mostly for billing purposes, and for 
this reason, they only collect total end-user 
consumption. In some cases, smart meters are modified 
so they can collect processing data, such as voltage 
magnitude. Such aggregated consumption prevents 
further analyses needed for the planning and RT 
operation of unbalanced distribution networks. 

Even though most end-users’ devices are single-
phase, end-users themselves can be single-phase or 
three-phase connected to a network, which causes a 
problem in the distribution of aggregated consumption 
among the phases. The advantages of NN overcome the 
complexity caused by the nonlinear relationships 
between phase consumption and voltage at each phase, 
and therefore, in this paper, two NN-based models for 
determining the distribution of end-user’s consumption 
by individual phase are developed. The first model 
implements the standard NN configuration, which 

consists of the input layer, hidden layer, and output 
layer. The hidden layer consists of a fully connected 
layer (FCL) that is deeply connected with its preceding 
layer, i.e. the neurons of its layer are connected to 
every neuron of its preceding layer. 

The input dataset is a dataset U, which contains the 
values of voltage magnitudes, while the output dataset 
is set P with the values of the active power of each end-
user. The influence of reactive power and voltage angle 
is out of the scope of this paper, which leaves room for 
the implementation of the proposed model in Q-U 
regulation and integration of LC units connected by 
converters. 

 Input and output datasets are obtained as a result 
of time simulations of power flows and represent the 
state of the observed LV network over a period of time. 
Therefore, the dimensions are given by TxNx3, where T 
stands for the total number of time steps in the 
considered time period, N accounts for the total 
number of observed end-users and 3 represents the 
number of phases in an LV distribution network.  

The second model is an extension of the first model, 
which, in addition to the initial input dataset, applies 
the admittance matrix of the observed LV distribution 
network, which contains information about the network 
elements and allows the display of the network in graph 
form. A graph can be written as G = (V, E), where V 
represents a set of vertices/nodes, and E is a set of 
edges/lines. In graph G, vi is the ith node and eij is the 
edge from the ith node to the jth node. 

Therefore, to enable the processing of network 
data, it is necessary to integrate additional layers that 
are suitable for working with data in the form of graphs. 
GNNs are the best solution for the implementation of 
the graph data, and therefore the second model is 
based on GNNs (Fig. 1). Unlike the first model, this one 
uses graph convolutional layers along with FCLs to 
establish the relationship between input and output 
datasets. Each layer l in GNNs can be denoted as 

𝐻(𝑙+1) = 𝑓(𝐻(𝑙), 𝐴) =  𝜎(𝐴𝐻(𝑙)𝑊(𝑙)) ( 1 ) 

where H represents node features, A is an 
adjacency matrix that represents the graph connection 
(Aij = [0, 1]), W is a weight matrix for the lth layer, and σ 
is an activation function. Since this equation does not 
include the feature vector of the observed node (i.e., it 
includes features for all of a given node’s neighbors), we 
extended layer representation  proposed in [10], by 
adding an identity matrix to the adjacency matrix. 
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Besides the P and U datasets, the second model 
applies the dataset M, which corresponds to an 
admittance matrix with dimensions 3K x 3K, where K is 
the total number of nodes in the LV distribution 
network. This admittance matrix can be classified as a 
weighted adjacency matrix which includes continuous 
values corresponding to the magnitudes of complex 
elements of the admittance matrix. Therefore, dataset 
M cannot be used as a direct input to the GNN model 
and therefore it is necessary to create a Laplacian 
matrix L as: 

𝐿 = 𝐼 −  𝐷−
1
2𝑀𝐷−

1
2 ( 2 ) 

 where I is the identity matrix and D is the degree 
matrix. 

3. RESULTS
The models described in Section 2 are applied to a

real-world LV distribution network of 151 residential 
consumers and a total of 245 nodes. Datasets P and U 
are generated using the pandapower power flow 
simulation tool. Since there are several nodes in the 
network that do not contain information about voltage 
measurements (e.g., connectors, network cabinets), it is 
necessary to ensure that the model does not generate 
predictions for them. 

For the proposed models to be applicable to 
distribution networks containing both three-phase and 
single-phase connected end-users, an LV distribution 
network containing only single-phase connected 
residential consumers is applied for the training of both 
models, while for testing a model, a network containing 
66 three-phase end-users and 85 single-phase end-
users, connected to phases A, B, and C is utilized.  

Due to the focus on the application of the proposed 
models on both types of networks, it is necessary to add 
a constraint to the loss function that will ensure that 
the obtained phase consumption is equal to the 
aggregated consumption of each end-user.   

3.1 NN model 
The datasets for the first model consist of 1342 

different time steps, of which 1100 time steps make up 
the training set and the rest is contained in the 
validation set. The best hyperparameters of the model 
are determined by validation and are presented in Table 
1. 

The performance of the model is assessed using the 
test dataset collected from the LV distribution network 
containing both three-phase and single-phase 
residential consumers, collected in 48 different time 
steps. There are 66 three-phase connected end-users 
and 85 end-users connected to phases A, B, and C. 

Furthermore, the validation loss of this model is 
0.014, while the mean squared errors (MSEs) on the 
test set are 0.025030 (for a larger test set with 1342 
time steps) and 0.029671 (for a smaller test with 48 
time steps). The distribution of end-user consumption 
per phase determined by this model for a part of the 
larger test set is presented in Fig. 2. 

b) phase B

Fig. 1. NN design for the second model 

Table 1: NN hyperparameters 

neurons (hidden layer) 8 
act.function (hidden layer) tanh 
act.function (output layer) linear 

batch size 100 
optimiser RMSprop 

learning rate 0.0001 
epochs 1500 

a) phase A
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c) phase C

Fig. 2. Distribution of end-user consumption, NN model

3.2 Graph neural network 
 The datasets for the second model consist of 672 

different time steps, of which 500 time steps make up 
the training set and the rest is contained in the 
validation set. The best hyperparameters are 
determined by validation and are presented in Table 2. 

The performance of the model is also tested using 
an LV distribution network that includes both three-
phase and single-phase connected end-users, whose 
phase distribution is described in Subsection 3.1. 
Moreover, the validation loss of the GNN model is 
0.0059. Due to the complexity and time-consuming 
nature of the model, the test dataset is limited in size 
and cannot reach the same number of time steps as the 
test set in the first NN model. For this reason, the test 
datasets contain one and 48 time steps with an MSE of 
9.38513 x 10-19 and 0.00621, relatively. A small error 
that could be considered as insignificant shows that the 
developed model with the application of network 
topology successfully mitigates the problem of 
unavailable end-user phase consumption, which later 
leads to better planning and operation of the 
distribution network.  

The distribution of the consumption of residential 
consumers per phase for the smaller test set is 
presented in Fig. 3. 

4. CONCLUSION
The integration of smart meters potentially

increases the network’s observability but, in most cases, 
smart meters measure only limited set of values, 
important for the billing purposes. In this paper, two 
models that accurately determine phase consumption 
from aggregated end-user consumption are created. 
The first model is based on NNs and seeks to find a 
relationship between voltage measurements and end-
user consumption measurements. The second model is 
upgraded compared to the first, and it includes the 

Table 2: GNN hyperparameters 

neurons GConv1, GConv2 3 
act.function GConv1, GConv2 tanh 

neurons (FCL) 3 
act.function (FCL) tanh 

act.function 
(output layer) 

linear 

batch size 50 
optimiser RMSprop 

learning rate 0.0001 
epochs 500 

a) phase A

b) phase B

c) phase C

Fig. 3. Distribution of end-user consumption, GNN model 
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topology of the network itself in the form of a graph, 
which leads to the implementation of more complex 
GNN algorithms. 

The proposed models are examined on a real-world 
LV distribution network with more than 150 residential 
consumers. Since the created models should enable the 
estimation of consumption in unbalanced distribution 
networks with three-phase and single-phase connected 
residential consumers, the models are tested for cases 
of a network with models of both single-phase and 
three-phase connected end-users. 

The GNN model based on network topology shows 
significantly better results compared to the simple NN 
model. Thus, the GNN-based model has an MSE error of 
9.38513 x 10-19 and 0.00621 for smaller and larger test 
sets, while the NN-based model results in an error of 
0.029671 and 0.02503 for smaller and larger test sets. 
The MSE error value is almost negligible in both cases, 
but the GNN model is still the preferable model due to 
its employment of network topology. However, in cases 
where the network topology is unknown or there are 
errors in the network data, the NN model can be 
utilized as a great alternative. 

Further development should go in the direction of 
implementing the model on distribution networks of 
different sizes which can consequently enable further 
analysis for energy utilities, including consumption 
forecasts, reservation of flexibility services, and other 
analyzes required for RT operation of smart distribution 
networks. 
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