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ABSTRACT 
Hybrid electricity/heat/hydrogen energy system is a 

potential solution for the future low-carbon residential 
energy system. This paper studies the efficient energy 
scheduling of such system, including hydrogen 
production, utilization and storage processes. To 
overcome the problems of coupling among the multi-
energy flow and the uncertainties on both sides of power 
and load, a deep reinforcement learning (DRL) algorithm, 
namely deep deterministic policy gradient (DDPG), is 
used to realize adaptive energy scheduling of the system. 
The scheduling results of simulation experiment under 
typical winter day scenario illustrate that, based on the 
pre-trained DDPG framework, the system can achieve a 
rapid response to the environment and optimize energy 
efficiency. Additionally, by appropriate power charging 
and discharging, the states of energy storage devices can 
essentially recover to their initial states, enabling the 
sustainable operation of the hybrid energy system. 
 
Keywords: hydrogen fuel cell, DDPG, energy scheduling, 
hybrid energy system 

1. INTRODUCTION 
The development of hybrid energy systems (HESs) is 

of great significance in encouraging the utilization of 
renewable energy and promoting the transition to low-
carbon or carbon-free systems. As the proportion of 
renewable energy increases, HESs can efficiently 
integrate various energy sources to ensure the stability 
and reliability of energy supply [1-2]. Besides, green 
hydrogen produced by renewable energy electrolysis can 
serve as a bridge between electricity and gas networks, 
expediting the process of deep cross-industry 
decarbonization [3]. Due to low operation noise, high 
power generation efficiency [4], and clean products, fuel 
cells make ideal devices for utilizing hydrogen energy. 
However, the energy supply of fuel cells is subjected to a 

specific thermoelectric ratio, while the energy demand is 
influenced by diverse factors and presents multiple 
uncertainties [5]. Therefore, optimal efficiency of fuel 
cells and stable operation of HESs require device-level 
development and maintenance, coupled with system-
level intelligent scheduling strategies.  

To date, traditional optimization algorithms are 
commonly used to optimize one or multiple predefined 
objective functions under operational constraints of 
various devices in HESs [6-7]. Since these algorithms 
usually rely on specific operational cycles as well as 
complex demand prediction models, improving the 
algorithms’ resilience to uncertainties in HESs remains a 
challenge. On the other hand, reinforcement learning 
(RL) based approaches are capable of mapping the state 
information to an aggregation decision-making model at 
the system level, which alleviates the requirement of 
precise device-level modeling through exploration and 
exploitation during the training process [8]. Besides, the 
integration of RL and neural networks, known as deep 
reinforcement learning (DRL), addressed the challenge of 
"curse of dimensionality" in RL, thus improving the 
computational efficiency of RL algorithms and expanding 
the scope of RL applications [9-10]. 

Currently, there is a research gap in applying RL to 
fuel cell-based HESs, especially for multi-energy flow 
systems that require continuous DRL algorithms to 
handle complex states and constraints. Furthermore, the 
majority of existing studies only tackle uncertainties of a 
particular form in HESs, disregarding the practical issues 
of energy coupling and efficiency enhancement under 
multiple uncertainties. For these reasons, this paper 
presents a new problem concerning the energy 
scheduling of a hybrid electricity/heat/ hydrogen energy 
system, which encompasses renewable energy, 
electricity, heat, and hydrogen production, utilization, 
and storage. An efficient energy scheduling model based 
on a continuous DRL algorithm called deep deterministic 
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policy gradient (DDPG) is proposed to minimize 
operation costs and improve sustainability. The 
proposed model can deal with multiple uncertainties in 
system operation, which include photovoltaic (PV) 
power, electricity demand, and heat demand. Finally, the 
effectiveness and economy of the proposed DDPG-based 
energy scheduling are demonstrated in simulation under 
the typical winter day scenario.  

2. SYSTEM MODELING AND OPTIMIZATION  
The structure diagram of a hybrid electricity/heat/ 

hydrogen energy system is shown in Figure 1, including 
fuel cell, water electrolysis cell, PV device, heat pump, 
hydrogen storage tank, thermal energy storage, grid, and 
electricity and heat demands.  

2.1 Fuel cell model 

In this paper, the proton exchange membrane fuel 
cell (PEMFC) is modelled based on the experiment results 
and performance evaluation in paper [11]. The hydrogen 

consumption at anode and cathode,
2

FC

Hn , can be 

calculated by theoretical current, I , as 
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H

n I
n

F
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where celln is the number of cells and F is the Faraday 

constant. 
PEMFC is characterized by the current density j  as 

 
cell

I
j

A
=  (2) 

where cellA is the effective area of one cell. The power as 

a function of current density is shown in Figure 2. 

 
Fig. 2. Impact of current density on PEMFC powers. 

2.2 Water Electrolysis Cell model 

This study adopts the proton exchange membrane 
method due to its compact structure, constant 
electrolyte concentration, and strong energy-fluctuating 
adaptability, which are suitable for coordinated 
operation with PV power and other volatile energy 
sources [12]. The hydrogen production rate of the water 

electrolysis cell EHN is positively related to current EHI as 
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where, EHN  is the number of moles of hydrogen 

production per second, EHn  is the number of cells and. 

The power curve of electrolysis cell as a function of 
current density is shown in Figure 3. 

 
Fig. 3. Impact of the current density on power. 

2.3 PV device model 

 
Fig. 1. Schematic diagram of the hybrid electricity/heat/hydrogen energy system 
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A PV device is also included in this system as part of 
the power source. The power generated by the PV device 
can be calculated as 

 0PV

E PV inv PVP A I =  (4) 

where PV and inv  are respectively the PV efficiency 

and inverter efficiency. 0I is the solar irradiance 

measured in Watts per square meter ( 2/W m ) and PVA

is effective area of solar panels.  

2.4 Heat Pump model 

Air source heat pump (HP) is used worldwide to 
efficiently provide heat from electricity. The coefficient 
of performance (COP) is defined as the ratio of the heat 
generated to the electricity consumed. By investigating 
air source HPs of different manufacturers under a wide 
range of power conditions and temperature differences, 
an empirical relationship of COP is regressed as  

 2

1 2 3 ,   15 60HP HP HPCOP h h T h T T= −  +      (5) 

where HPT represents the temperature difference 

between the produced water and ambient air, and 

( 1,2,3)ih i =  is the fitting coefficient [13]. The heat 

generated by HP can be obtained by  

 HP HP

H EP P COP=  (6) 

where ,

HP

E kP  is the electricity consumed by heat pump. 

2.5 Thermal energy storage model 

Thermal energy storage (TES) is included in the 
hybrid system to decouple the mismatch between 
electricity and heat demands. To describe the dynamic 
characteristic of TES, the heat storage degree (HSD), 
similar to SOC of battery, is introduced and defined as  

 ,

1

TES

H t

t t

c

P
HSD HSD T

H
+ = −   (7) 

where 0 t T   is the time step, ,

TES

H kP  is the heating 

power (kW) of the heat charge (negative) or discharge 

(positive), and cH is the full heat storage capacity. The 

value of HSD ranges from 0 to 1, which means the 
capacity of TES is between empty and full. 

2.6 Hydrogen Storage Tank model 

This paper utilizes the hydrogen storage tank (HST) 
introduced in [14] to store the hydrogen generated by 
water electrolysis cell, while simultaneously supplying 
fuel to the fuel cell. The pressure dynamic of HST can be 
written as 

 
2

1
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H H k H

k k k
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N RT
TP TP z

M V
+ = −  (8) 

where H

kTP  and HST

kN  are the pressure of HST and 

hydrogen flow rate at time step k, HV  is the volume, 

HT is the temperature generally regarded as a constant, 

2HM is the Molar mass of hydrogen, R is the universal 

gas constant, and kz is the compression coefficient of 

hydrogen which can be calculated as follows: 
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where ,  ,  i i ia b c are the constants and 0 100T K= . 

2.7 Optimization problem formulation 

The storage ability of TES and HST provides the 
proposed HES with sufficient scheduling flexibility. To 
enhance the efficiency of PV energy utilization, the PV 
power is directly used by electrolysis cell. Based on these 
premises, the scheduling optimization problem of the 
HES is essentially to adjust the power output of fuel cells 
and heat pumps, so as to minimize the operation cost 
and ensure the sustainability. 
2.7.1 Objective Function 
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where J  includes the operation cost of fuel cell, FC

kC , 

and power purchasing cost of grid, G

kC . 0c  is a 

constant and tp  is the electricity price.  

2.7.2 Device Constraints 

 ,min , ,max

FC FC FC

E E t EP P P   (11) 

 ,min , ,max

EH EH EH

E E t EP P P   (12) 

 ,min , ,max

HP HP HP

E E t EP P P   (13) 

 min maxtHSD HSD HSD   (14) 

 min maxtTP TP TP   (15) 

 0 min max0.5 ( )HSD HSD HSD=  +  (16) 

 0 min max0.5 ( )TP TP TP=  +  (17) 

where (11)-(13) are the upper and lower power 

constraints for fuel cell, ,

FC

E tP , electrolysis cell, ,

FC

E tP  and 

heat pump, ,

HP

E tP . (14)-(15) and (16)-(17) are the power 

constraint and initial state of TES and HST. This initial 
value setting way can ensure sufficient charging and 
discharging space of them. 
2.7.3 Power and Hydrogen Balances 

 , , , , , ,

FC PV G L HP EH

E t E t E t E t E t E tP P P P P P+ + = + +  (18) 
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, , , ,

FC HP TES L

H t H t H t H tP P P P+ + =  (19) 
EH HST FC

t t tN N N+ =  (20) 

where ,

G

E tP , ,

L

E tP and ,

L

H tP are respectively the power of 

grid, electricity demand and heat demand, and , 0G

E tP   

means electricity purchase from grid and , 0G

E tP   

means electricity sale.  
The scheduling optimization problem in (10) is a 

cumulative objective function optimization with multiple 
decision variables, which requires overcoming various 
state and control constraints at each time step, while the 
variables interact in a time-state space and the feasible 
domain is difficult to plot. Additionally, system 
uncertainties, such as PV power and demands, are 
difficult to be handled by conventional deterministic 
algorithms due to their dependence on complex 
prediction models and cumbersome computational 
processes. Therefore, this paper adopts the model-free 
DDPG algorithm to achieve efficient energy scheduling of 
the HES. 

3. DEEP DETERMINISTIC POLICY GRADIENT  

3.1 Markov Decision Process 

The RL task is usually described by markov decision 
process (MDP), which can be defined by a five tuple: 
( , , , , ) : state, action, transition matrix, reward 

and discount factor. 
3.1.1 State Space 

 ,  ,  ,  ,  ,E T

PV L Lt P P P TP HSD =    (21) 

where the states are respectively time, PV power, 
electricity demand, heat demand, pressure of HST and 
HSD of TES.  
3.1.2 Action Space 

 [ ,  ]FC HPN P=  (22) 

where the actions are respectively hydrogen flow rate of 
fuel cell and power of heat pump.  
3.1.3 Reward Function 

 1 2 3 3

5 6

FC G H H

ex loss

T T

C C P P

HSD TP

   

 

 + + +
= − 

+  +  
 (23) 

where FCC and GC have the same definition as (10). 
H

exP  and H

lossP  are the heat power excess and loss at 

each time step. THSD and TTP are the terminal state 

cost of TES and HST, which will be calculated after the 

last time step and satisfy 0T THSD HSD HSD = −  and 

0T TTP TP TP = − . 

 
Fig. 4. Schematic diagram of DDPG algorithm 

3.2 DDPG algorithm 

DDPG is a classical DRL algorithm which can solve the 
continuous control problem of equipment powers (fuel 
cell and heat pump) of the HES. In this paper, the 
Ornstein-Uhlenbeck (OU) noise is utilized for its 
suitability for inertial systems, which can be added to 
primary strategies to efficiently exploring the unknown 
environment. Meanwhile, the noise attenuation is 
considered to achieve the balance between exploration 
and exploitation. The schematic diagram of DDPG is 
shown in figure 4, where the critic network, actor 
network, target critic network, and target actor network 

are respectively marked as ( , | )QQ s a  , s ( | )PP s  , 
''( , | )QQ s a  ,  and ''( | )PP s  ,with Q , P , 'Q and

'P being the network parameters. The OU noise added 
on action can be expressed as 

 ( | )Pa P s =  (24) 

 ' ( )a a s= +  (25) 

where a is the action output at state s , ( )s  is the OU 

noise related to the state and 'a  is the new action.  

4. SIMULATION RESULTS AND ANALYSIS  

4.1 System and DDPG settings 

The specification and safety constraints of each 
device are given in Table 1. 

Table 1. Main parameters of devices 

Device Specification Constraints 

Fuel cell 
2

12

100 

cell

cell

n

A cm

=

=
 

,max

,min

4 

0 

FC

E

FC

E

P kW

P kW

=

=
 

Electrolysis 
cell 2

10

2.5 

EH

EH

n

A cm

=

=
 

,max

,min

4 

0 

EH

E

EH

E

P kW

P kW

=

=
 

HST 

31.0 

300 

H

H

V m

T K

=

=
 

max

min

1 

0.5 

TP Mpa

TP Mpa

=

=
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TES 10 cH kWh=  
max

min

1

0

HSD

HSD

=

=
 

Heat Pump , 4 HP

E rP kW=  
,max

,min

4 

0 

HP

E

HP

E

P kW

P kW

=

=
 

PV 
216 PVA m=  \ 

In addition to data in Table 1, the Faraday constant is 

96485 C/mol, the temperature of hot water DHWT is 55℃, 

the molar mass of hydrogen is 2.016 g/mol and the gas 
constant R is 8.314 J/(mol·K). 

The actor and critic network both have four layers. 
The actor network has five inputs (state) and two outputs 
(action), and the activation function of output layer is 
sigmoid. The critic network has seven inputs (state and 
action) and one output (reward). The target networks are 
initialized with the same structures and parameters.  

4.2 Simulation Results of typical day scenario 

To simulate the operation of the HES, a scenario is 
randomly generated before each training episode 
according to the typical winter day scenario data [15] and 
the feasible operation region of the devices, which 
includes ambient temperature, solar irradiance, 
electricity demand and heat demand. The randomness in 
the scenario corresponds to the multiple uncertainties in 
system operation. The training cumulative reward curve 
of DDPG is shown in figure 5, where “mean” denotes the 
average cumulative reward of every five episodes. Based 
on the pre-trained networks, the power scheduling 
results of typical winter day scenario are shown in figure 
6 and 7. Finally, the pressure and HSD scheduling results 
are shown in figure 8.  

The results in Figure 5 illustrate the exploration and 
exploitation process of DDPG. With the improvement of 
strategy, the algorithm converges at about 160 episodes. 
The power flows in figure 6 and 7 show that there exists 
no energy excess or loss as a result of the optimized 
scheduling strategy of fuel cell and heat pump, which 
ensures the effectiveness of DDPG. Additionally, the 
results in figure 8 show that the excess hydrogen 
produced by electrolytic cell can be stored in the HST 
when PV power is high. Because COP increases with 
temperature, the heat pump will generate additional 
heat for TES to charge. After the typical winter day 
scheduling, the pressure of HST returns to 0.77, with an 
initial state 0.75, and HSD of TES returns to 0.49, with an 
initial state 0.5. The results fully guarantee the 
thermoelectric decoupling demand of the next day. 
Under the typical daily scenario, the total cost based on 
DDPG is 3.77, which is 8.71% lower than the 4.13 based 
on traditional rule-based method. 

 
Fig. 5. Cumulative reward curves of DDPG 

 
Fig. 6. Electricity power scheduling results of DDPG 

 
Fig. 7. Scheduling results of heat power based on DDPG 

 
Fig. 8. Scheduling results of the pressure of HST and HSD of 

TES based on DDPG 

5. CONSLUSION  
This paper proposes a DRL-based energy scheduling 

method for hybrid electricity/heat/ hydrogen energy 
systems composed of a fuel cell, water electrolysis cell, 
PV device, heat pump, hydrogen storage tank, and 
thermal energy storage. Due to the problems of coupling 
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among the multi-energy flow and uncertainties on both 
sides of power and load, achieving efficient energy 
scheduling with traditional optimization methods 
remains a challenge. Therefore, the model-free DDPG 
algorithm is used in this paper to overcome these issues. 
Firstly, the optimal scheduling problem is established by 
considering the physical characteristics and safety 
constraints of the devices. Secondly, the system 
operation progress is described as an MDP model, 
including state space, action space, and reward function. 
Finally, the simulation experiment is carried out under 
the typical winter day scenario. The scheduling results of 
DDPG illustrate that the training task under randomly 
generated scenarios can be successfully completed, and 
the scheduling strategy of the system can effectively 
achieve thermoelectric decoupling with no energy excess 
or loss. Besides, the pressure of HST and HSD of TES can 
return to 102.67% and 98.00% of their initial states, 
respectively, which ensures the long-term sustainable 
operation capability of the HES.  

In subsequent studies, we aim to improve the 
training efficiency of the DDPG algorithm. Besides, we 
intend to compare DDPG with other RL algorithms in 
long-term scenarios, so as to validate its effectiveness 
and superiority. 
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