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ABSTRACT 
 Great effort has been made to restructure the 

traditional monopolization of power industries to 
introduce fair competition. The deregulation of the 
electricity market allows the price of electricity to be 
formulated based on the bidding price. Nevertheless, it 
is still challenging to derive an optimal bidding strategy 
with many factors that need to be considered. This paper 
proposes a reinforcement learning (RL) based method to 
devise an optimal bidding strategy for maximizing the 
profit, taking the risk preferences in the spot electricity 
market into consideration. The problem is formulated 
based on Markov decision process (MDP), which is a 
discrete stochastic optimization method. The objective 
function is to optimize the cumulative profit over the 
span. This method also employs temporal difference 
technique and actor-critic learning algorithm for strategy 
optimization. In addition, the study introduces smart-
market market-clearing method and a Gaussian 
distribution to formulate the strategy. Two different 
environmental conditions of the spot electricity market, 
static and dynamic, are applied in the simulation for 
analysis completeness. Only the target plant can adjust 
the bidding strategy in the static environment while all 
plants can adjust the bidding strategy in the dynamic 
environment. Simulation cases of nine participants are 
considered and the obtained results are analyzed.  
 
Keywords: clean energy, reinforcement learning, risk 
analysis, strategy optimization 
 

1. INTRODUCTION 
Deregulation of the electricity industry has become 

an established practice in many countries. In the day-
ahead market, the power-exchange bidding mechanism 
requires each bidder to submit the bid as a block once 
per day (24 hours). However, in the spot electricity 
market, the supply of electricity is distributed by the 
power stations and subsequently allocated to 
households and industries. Electricity in the spot market 
is bought and sold at the spot price. 

An optimal strategy aims to maximize a profit with 
lowest risk involved. Several optimal bidding strategy 
models focusing on the market clearing-price forecast 
have been proposed, while others concentrate on the 
bidding behaviors prediction of competitors. As such, 
market bidding strategies are implemented to evaluate 
the accuracy of the electricity consumption based on 
various market simulations and load forecasting. A basic 
price-based auction mechanism is firstly proposed by 
Christie et al. [1] where Mielczarski et al. [2] proposed an 
auctioneer method to match the bids of buyers and 
sellers to find the market clearing price (MCP). Game 
theory has been used [3] and [4] for optimal bidding 
based on hourly auctions. David et al. [5] proposed a 
genetic algorithm to competition strategy in the spot 
market. However, these approaches are only effective if 
the market is not volatile. Optimization-based bidding 
strategies are proposed by [6] to address the volatile 
market issue. The optimal bidding is divided into two 
optimization problems: a bidder (deterministic) and an 
independent system operator (ISO) (stochastic). Zaid et 
al. [7] modeled the problem of optimal bidding as a 
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Markov decision process (MDP) where load on a weekly 
basis with peak and off-peak loads is considered. 

The study on bidding strategy optimization is limited 
in conventional simulation methods, mainly focusing on 
the day-ahead market. Another problem is the deficiency 
analysis of market environment where the simulation 
under static and dynamic conditions belongs to different 
agent models. Meanwhile, sampling process of load is 
not convincing with distinction only in weekly peak and 
off-peak. What’s more, risk preference analysis is not 
considered in most of the existing market simulations, 
which is a key component in studying the behavior of 
power generation company. Risk preference analysis is 
an important indicator for evaluating the degree of 
acceptance to risks of power plants during bidding. 

In this paper, a reinforcement learning (RL) method 
was proposed to devise an optimal bidding strategy, with 
the aims to maximize the profit with consideration of risk 
preference in spot electricity market. The problem is 
formulated in the framework of Markov decision process 
(MDP) under two different environment conditions of 
the spot electricity market (static and dynamic 
conditions of bidding in the spot electricity market). The 
temporal difference technique and actor-critic learning 
algorithm are employed for strategy optimization. The 
study utilizes smart-market market-clearing system and 
Gaussian distribution sampling methods to formulate 
the forecasting of loads in a simulated market. The major 
contributions of this paper include: 

a. The optimal strategy considers loads, 
competitors offer, and historical bidding as 
inputs to a RL model and the performance is 
evaluated based on a market simulation under 
static and dynamic environment respectively. 

b. This study also research on generating dataset 
with risk preference data based on MDP and 
Gaussian distribution method, to be used in the 
simulated market for analysis. 

2. MATERIAL AND METHODS  

2.1 Problem simulation 

The ISO conducts an energy auction for the spot 
market. The electricity spot market is a wholesale market 
and operates everyday day from 7 am to 1 pm. Then, 
based on the bidding results, the electricity is traded and 
distributed at midnight. The bids are presented in the 
form of points in a piecewise linear curve on energy and 
price coordinates. The seller bids the amount of the 
energy that he or she is willing to sell at a given price or 
above, and the buyer bids the amount of the energy he 

or she is willing to buy for a given price or a price lower 
than it. The unconstrained MCP is determined by the 
point of intersection of the aggregate demand and 
supply bid curves.  

It is presumed that the external operation conditions 
that bidders are aware include the total generation 
capacity of each other, the load forecast for the next 
hour, the past cost curves of competitors. The internal 
operation conditions include the start-up cost of each 
unit, and the cost curve is assumed to be known, in the 
form of: 

 

𝐶𝐶𝑖 = 𝑎𝑖 + 𝑏𝑖𝑈 + 𝑐𝑖𝑈2 
 

where the start-up cost for an hour t is 𝑠𝑢𝑖𝑡.  
The bidder first decides how many parts it wants to 

bid, i.e., 𝑞  parts. It divides its maximum generation 
capacity into 𝑞 parts and using the cost curve method 
to find the marginal generated cost. This forms its middle 
element 𝑀  of bid set. The higher 𝐻  and lower 𝐿 
elements of the bid set are obtained from the middle 
element as: 

 

𝐻𝑗
1 = 1.1𝑀𝑗

1 

 

𝐿𝑗
1 = 0.9𝑀𝑗

1 

 
where 𝐽 = 1,2,3, . . . 𝑞.  

The bid set consists of a Cartesian product of the 
three bid elements for each part. For a two-part bid 
(𝑞 = 2)  and three-level (𝐻,𝑀, 𝐿)  bids, the bid set 
consists of nine (3𝑞) bid-set: 

 
𝐵𝑠 = [𝐵1𝐵2. . . 𝐵3𝑞] 

 
where  
 
𝐵 = [0，𝑃1，𝑃2，. . . 𝑃𝑞，𝑏，𝑝𝑟1，𝑝𝑟2，. . .，𝑝𝑟𝑞] 

 

2.2 Static and Dynamic Environment 

Based on MDP method, a problem can be defined 
where the factors influencing clearing price is set as state 
and the bid-set of target power plant is defined as action. 
This study considers both the static and dynamic 
environment conditions. In a static environment, only 
the target plant can adjust strategy while others bid with 
marginal cost in the static environment. Meanwhile, in a 
dynamic environment, all plants can adjust their strategy 
accordingly. The state of the system is defined as bids 
offered by each bidder in a particular hour. The bids 
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offered by each bidder are selected from their respective 
bid sets.  

Bidders are then deciding their bidding actions and 
their offers in the next clearing round in an hour. Here, 
the bidding action is transferred from a continuous state 
space into a discrete state space since the continuous 
price value could be segmented into n classes according 
to the n bidding volume shaping as price-volume pair 
𝑝𝑟𝑖𝑖 and 𝑣𝑜𝑙𝑖 where 𝑖 ∈ 1, . . . , 𝑛. The reward function 
is the summation of two parts, the net profit (NP), and 
the potential risk R with coefficient 𝛼. 

 

2.3 Application of the Actor Critic Learning Algorithm 

This section considers the application of the deep 
deterministic policy gradient (DDPG) method to produce 
an optimal bidding strategy based on inputs of loads, and 
their corresponding risks to address the problem 
formulated. Under the static conditions, the simulations 
are carried out by an agent, operated based on the target 
bidder. Under the dynamic conditions, the simulations 
are carried out by the agents operated by all bidders. The 
proposed DDPG algorithm methods under different 
environment are shown in Fig. 1. 

3. RESULTS AND DISCUSSION  

3.1 Design of Simulation System 

The design of the system simulation considers 
several elements as follows: 

• Three dispatchable loads, bidding three fixed 
blocks each as shown in Table 1. 

• Each of the six electricity generators has three 
blocks of capacity, and the initial offering is 
shown in Table 2. 

• Load sampling from Gaussian distribution. 

TABLE I 
THREE DISPATCHABLE LOADS 

Generator 
Block1 Block2 Block3 

MW*$/MWh MW*$/MWh MW*$/MWh 

1 10*$100 10*$100 10*$100 
2 10*$100 10*$100 10*$100 
3 10*$100 10*$100 10*$100 

 
TABLE II 

SIX DISPATCHABLE GENERATORS 

Generator 
Block1 Block2 Block3 

MW*$/MWh MW*$/MWh MW*$/MWh 

1 12*$20 24*$50 24*$60 
2 12*$20 24*$40 24*$70 
3 12*$20 24*$42 24*$80 
4 12*$20 24*$44 24*$90 
5 12*$20 24*$46 24*$75 
6 12*$20 24*$48 24*$60 

 
The market simulations under both environments 

are carried out based on the sample systems. The 
discount factor γ is 0.8. The parameter of step size α is 
varied from 5 to 50 according to risk parameter. The 
result converges at early stage with greater risk 
parameter. The step size parameter for preferences is 
0.02. A total of 10 000 iterations were carried out for 
each experiment. 

3.2 Static Environment 

3.2.1 Results without Risk Preference 

The self-clear price in 24 hours for the spot market 
where target generator is 1 to 6 respectively is shown in 
Fig. 2. The original trading price where all generators bid 
by marginal cost is also shown in Fig. 2 with points. From 
the results, it is obvious that self-clear price will increase 
substantially when target generator take strategy during 
bidding. 

 
Fig. 1. Framework of DDPG algorithm under different 

environment  
 
 

 
Fig. 2. The self-clear price in 24 hours for the spot market 
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Table 3 shows the average increasing percentage for 
each target generator over 24 hours trading. The 
strategy effect works differently for generators. 
Generator 1, 5, and 6 show highest significant 
improvement in performance. It is observed that the 
strategy effect depends on the generator’s attributes 
including generator physical conditions and risk 
preference decision. 

 
TABLE III 

 PROMOTION PERCENTAGE OF PRICE ON 6 GENERATORS 

Generator 1 2 3 4 5 6 

Percentage 16.6 15.0 15.6 11.3 29.3 39.2 
 

 
Fig. 3 shows the self-clear volume in 24 hours for the 

spot market where target generator is 1 to 6 
respectively. Fig. 2 together with Fig. 3 forms the bid 
clear pair of trading. The original trading volume where 
all generators bid by marginal cost is also shown in Fig. 2, 
presented as points. From the results, it is seen that self-
clear volume will not absolutely increase when target 
generator take strategy during bidding. The strategy 
considers the incremental of overall revenue instead of 
single factor. 

 
Table 4 shows the average increasing percentage for 

each target generator over 24 hours trading. Compared 
with the promotion percentage of price, direct 
proportion can be observed. 

 

TABLE IV 
PROMOTION PERCENTAGE OF PROFIT ON 6 GENERATORS 

Generator 1 2 3 4 5 6 

Percentage 25.0 3.0 1.0 1.5 50.0 62.0 

 

3.2.2 Results with 0.5 to 0.8 Risk Index 

Taken one of the generators as target example, the 
self-clear price, volume pairs in 24 hours for the spot 
market for target generator 1 to 6 is shown in Fig. 4 
where the generators are under low-risk index 
transaction. 

Table 5 shows the average increasing percentage of 
profit for each target generator over 24 hours trading. It 
could be seen that the increase in percentage is caused 
by the decline in strategy bidding thoroughly compared 
with the static environment without risk preference, 
regardless of the risk adventure or averse. However, the 
extent of decline varies depending on its risk preference. 

 
TABLE V 

PROMOTION PERCENTAGE OF PRICE ON 6 GENERATORS 
WITH RISK 

Generator 1 2 3 4 5 6 

Percentage 15.0 0.5 0.8 1.2 42.0 57.0 

 

3.3 Dynamic Environment 

The same sample system is applied in the market 
simulation under dynamic conditions. Experiment starts 
with condition without including the risk preference 
followed by considering the risk factor in the simulation. 
Iteration of 10 000 were carried out for the above 
problem. 

 
3.3.1 Results without Risk Preference 

The self-clear price and volume pairs in 24 hours in 
the dynamic spot market bidding without risk for 
generator 1 to 6 is shown in Fig. 5. Generators 1, 5 and 6 
achieve a higher price and larger volume leading to 
higher net profit. Apart from they have better machine 
set supporting power generation, their risk tolerance is 
higher which is shown in Fig. 6. 

 
3.3.2 Results with Risk Preference 

The self-clear price and volume pairs in 24 hours in 
the dynamic spot market bidding with risk for generator 
1 to 6 respectively is shown in Fig. 7. Generally, the 
transaction results almost keeps in same proportion 
among generators as situation without risk. The 
numerical value of either clear price or volume decreases 
respectively for all generators. It is reasonable to achieve 
such market clear results since every participant will 
bidding vigilantly trying not to against self-risk tolerance. 
The relearned actual risk preference for each generator 
is shown in Fig. 8. It shows that the profit variation for 

 
Fig. 3. The self-clear volume in 24 hours for the spot market 



 5  

participants grows resulting in higher risk compared with 
original situation.  

It is assumed that other agents bid with marginal cost 
as fixed policy. The experiments results shows that self-
clear profit will increase substantially when target 
generator take strategy during bidding, the promotion 
from strategy effect depends on the generators private 

attribute including generator physical conditions and risk 
preference decision, risk preference will limit the profit 
promotion and enlarge the variance of profits, and larger 
risk index will have larger effects. 

The agents bid based on the assumption that 
applying a policy maximizing the profit earned by the 
bidders, while minimizing the others’ profit constrained 

 
 

 
 

 
Fig. 5. The self-clear results value in 24 hours for the spot 

market under dynamic conditions 

 
 

 
 

 
Fig. 4. The self-clear results value in 24 hours for the spot 

market with 0.5 to 0.8 risk index 
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by risk preference. The experiments results show that for 
all generators, profit increases with results showing 
better performance under static conditions. In addition, 
the promotion has less deviation comparing to static 
conditions. Lastly, the risk preference limits the profit 
promotion and enlarge the variance of profits whose 
effect is larger than risk consideration under static 
situation. 

4. CONCLUSIONS 
This study models the spot market bidding problem 

based on MDP method which aims to solve the bidding 
strategy optimization problems. This work considers the 
smart-market market-clearing system and Gaussian 
distribution to formulate the optimization strategy. In 
addition, this study integrates a reinforcement learning, 
temporal difference technique and actor-critic learning 
algorithm to formulate the bidding strategy. The results 
show that the optimal bidding strategy could maximize 

the profit by including risk preference using the proposed 
method, experimented under both the static and 
dynamic conditions. 

 
Fig. 6. The risk preference value in 24 hours for the spot 

market under dynamic conditions without risk 

 
 

 
 

 
Fig. 7. The self-clear results value in 24 hours for the spot 

market under dynamic conditions with risk 

 
Fig. 8. The risk preference value in 24 hours for the spot 

market under dynamic conditions with risk 
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