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ABSTRACT 
 Energy management strategy plays an important role 
in improving fuel economy and prolonging life time for 
fuel cell hybrid electric vehicle. To keep charge margin 
and reduce overall driving cost which consists of fuel 
consumption and health degradation of power battery 
and fuel cell, this paper proposes a novel energy 
management strategy based on Soft Actor-Critic, a fully-
continuous deep reinforcement learning algorithm. 
Numerous simulation experiments manifest that the 
proposed method can obtain excellent balance between 
charge-keeping and money-saving both in charge 
depleting and charge sustaining modes. Results suggest 
that running FCHEV in low charge for long time should be 
avoided. 

Keywords: energy management, fuel cell, hybrid electric 
vehicle, state of health, soft actor-critic, multiple 
objective optimization 

NONMENCLATURE 

Abbreviations 
EMS Energy Management Strategy 
FCHEV Fuel Cell Hybrid Electric Vehicle 
DRL Deep Reinforcement Learning 
SAC Soft Actor-Critic 
SOC State of Charge 
SOH State of Health 

Symbols 
m Total mass of vehicle 
g Gravity acceleration 
a Acceleration of vehicle 
v Velocity of vehicle 
𝑃𝑟𝑒𝑞 Requested power of motor 

𝑃𝑏𝑎𝑡 Power of battery pack 
𝑃𝐹𝐶𝑆 Output power of fuel cell system 
𝐶𝑛 Nominal capacity of battery pack 

 Corresponding author e-mail: jkpeng@seu.edu.cn 

1. INTRODUCTION
In context of global fossil energy crisis and demand

for energy conservation and emission reduction, more 
and more automobile manufacturers turn their attention 
to hybrid electric vehicles, electric vehicles, and fuel cell 
hybrid electric vehicles [1]. FCHEV has advantages of no 
greenhouse gas emission, simple utilization, quiet 
operation and high efficiency [2], but suffers from low 
dynamic characteristics of output power [3]. Thus, a pack 
of lithium-ion power battery is equipped onboard as the 
auxiliary energy source to provide peak power and 
recover brake energy. However, the two energy sources 
are different in working characteristics, attenuation 
conditions etc [4]. Therefore, it is of great significance to 
develop an appropriate and effective energy 
management strategy for FCHEV to maximize their great 
economic potential. 

As a key automotive technology, EMS plays an 
important role in the distribution of energy from fuel cell 
and battery pack, and thus leads to proper operation 
condition and reduction in running cost. The current EMS 
for FCHEV can classified as three types [5]: rule-based, 
optimization-based and learning-based. 

The advantages of rule-based EMS are simplicity of 
design, ease of implementation, and low burden on 
computation. However, the design of rules relies heavily 
on engineering experience and comprehensive expertise, 
and cannot guarantee optimal performance [6]. 
Therefore, optimization-based EMS became one of the 
research focuses, and can be divided into global 
optimization and instantaneous optimization [7]. 

As a classical global optimization algorithm, dynamic 
programming (DP) is utilized to develop off-line EMS 
under the premise of knowing whole driving cycle in 
advance, but it is mainly used as benchmark due to heavy 
computation burden and global optimality [8]. With the 
study of on-line optimal control method, Pontryagin's 
minimum principle (PMP) and model predictive control 
(MPC) have been employed to develop instantaneous 
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optimization-based EMS. Ouyang et al. [9] implemented 
a PMP-based EMS to reduce hydrogen consumption by 
5.9% per 100 km. Xiaosong H et al. [10] proposed a MPC 
framework to minimize running cost of FCHEV. The EMS 
based on instantaneous optimization method have no 
heavy computational burden, and are able to be 
implemented in real-time application. However, 
instantaneous optimization is not equal to overall 
optimization, and the global optimal performance 
cannot be guaranteed [11]. 

In recent years, reinforcement learning-based EMS 
have been very popular for HEV with internal 
combustion engine, due to near-optimal performance 
and on-line application capacity [12]. But there are very 
few relevant reports about learning-based EMS for 
FCHEV. The first time that deep reinforcement learning 
is implemented in EMS of FCHEV is reported in [11]. They 
used deep Q-Network, and discretized power change of 
FCS into nine values as control actions, which brought 
two problems. The discretization process reduced 
control accuracy, and huge action space increased 
computation burden and may even cause dimensionality 
curse. 

This paper is devoted to bridge the aforementioned 
research gaps and proposed a novel EMS for FCHEV 
based on Soft Actor-Critic, which is a well-proved fully 
continuous DRL method. By designing reward function, 
health performance of both power battery and fuel cell, 
fuel economy, and charge margin are taken into 
consideration to develop an optimal control strategy. 
The rest of this paper is organized as follows: section 2 
describes powertrain configuration, fuel cell model, and 
power battery model; section 3 introduces SAC algorithm 
and design details of EMS; simulation results are 
analyzed in section 4; section 5 concludes this paper. 

2. PAPER STRUCTURE

2.1 Model Description 

2.1.1 Powertrain of FCHEV 

The research object in this paper is a fuel cell hybrid 
electric bus, which is driven by an electric motor with 
peak power of 120 kW. As shown in Fig. 1, the power of 
motor comes from two parts: the fuel cell engine and the 
power battery pack. Main configuration of powertrain is 
listed in Table 1. The overall power demand 𝑃𝑟𝑒𝑞 is: 

{

𝐹 = 𝑚𝑔𝑓𝑐𝑜𝑠𝜗 +𝑚𝑔𝑠𝑖𝑛𝜗 +
𝐴𝐶𝐷𝑣

2

21.15
+𝑚𝑎

𝑃𝑟𝑒𝑞 = 𝐹 ∙ 𝑣 = 𝑇𝑚𝑜𝑡 ∙ 𝑊𝑚𝑜𝑡

𝑃𝑟𝑒𝑞 = (𝑃𝑏𝑎𝑡 + 𝑃𝐹𝐶𝑆) ∙ 𝜂𝑖𝑛𝑣

(1) 

where 𝑓  is rolling resistance coefficient, 𝜗 
denotes road slope, 𝐶𝐷 is air resistance coefficient, and 
𝐴  is front window area. 𝑇𝑚𝑜𝑡  and 𝑊𝑚𝑜𝑡  denote 

torque and speed of traction motor respectively, and 
𝜂𝑖𝑛𝑣  is efficiency of inverter. The traction motor is 
modeled by quasi-steady state method, and the 
efficiency map is illustrated in Fig. 2. 

Table. 1 Main configuration of vehicle 

Fig. 1 Powertrain structure 

Fig. 2 Motor efficiency map 

2.1.2 Fuel cell model 

As the main power source of FCHEV, fuel cell system 
converts chemical energy of hydrogen and oxygen into 
electrical energy through electrochemical reaction. This 
paper uses physical and empirical model by considering 
physical laws and operating conditions. The hydrogen 
consumption rate of fuel cell stack can be calculated [13]: 

𝑚̇ =
𝑃𝐹𝐶𝑆

𝜂𝐹𝐶𝑆 ∙ 𝐿𝑣
(2) 

where 𝐿𝑣 is hydrogen lower heating value equaling to 
120 𝑘𝐽 𝑔⁄ , and 𝜂𝐹𝐶𝑆 is the efficiency of fuel cell stack. 

Items Parameters Value 

Vehicle 

Curb weight 14500 kg 

Rolling resistance coefficient 0.0085 

Tire radius 0.466 m 

Air resistance coefficient 0.55 

Front windward area 8.16 m2 

Velocity [0, 69] km/h 

Acceleration [-1.5, 0.7] m/s2 

Motor 
Peak power 200 kW 

Efficiency [0.85, 0.97] 

FCS Peak power 60 kW 

DC-DC 

converter 

Peak power 60 kW 

Efficiency [0.90, 0.95] 

Battery Capacity 108.14 kWh 
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The relationships between power 𝑃𝐹𝐶𝑆  and hydrogen 
consumption rate 𝑚̇ and efficiency 𝜂𝐹𝐶𝑆 are illustrated 
in Fig. 3. 

Fig. 3 H2 consumption rate and efficiency map 
Fuel cell degradation is mainly caused by four kinds 

of unfavorable driving conditions: load changing cycles, 
start-stop cycles, low-power load, and high-power load. 
Based on the contributions of Song et.al [14], discrete 
expressions for fuel cell degradation are as follows: 

𝐷𝐹𝐶 =∑[𝑑𝑠𝑠(𝑡) + 𝑑𝑙𝑜𝑤(𝑡) + 𝑑ℎ𝑖𝑔ℎ(𝑡) + 𝑑𝑐ℎ𝑎(𝑡)]

𝑛

𝑡=0

(3) 

where 𝐷𝐹𝐶  (%) is the total performance degradation 
of fuel cell system, n is the number of time steps. 𝑑𝑠𝑠, 
𝑑𝑙𝑜𝑤 , 𝑑ℎ𝑖𝑔ℎ , 𝑑𝑐ℎ𝑎  are the performance degradation 

caused by start-stop cycles, low-power load, high-power 
load, and load changing cycles at moment t respectively. 
Their accurate calculation method can be found in [15]. 

2.1.3 Power Battery Model 

As the other energy source of FCHEV, the power 
battery pack is mainly utilized to provide peak power and 
store excess power. The equivalent circuit model is used 
to simulate battery pack [16]: 

{

𝑃𝑏𝑎𝑡 = 𝑉𝑂𝐶𝐼 − 𝑅𝑏𝑎𝑡𝐼
2

𝐼 =
𝑉𝑂𝐶 −√𝑉𝑂𝐶

2 − 4𝑅𝑏𝑎𝑡𝑃𝑏𝑎𝑡

2𝑅

𝑆𝑂𝐶 = 𝑆𝑂𝐶0 −
∫ 𝐼𝑑𝑡

𝐶𝑛

(4) 

where 𝑉𝑂𝐶  is the open circuit voltage, 𝐼 is load current, 
𝑅 is the internal resistance, 𝑆𝑂𝐶0 is the initial value of 
𝑆𝑂𝐶. Fig. 4 describes the characteristics of power battery 
pack. 

Fig. 4 Battery characteristic 

The energy-throughput model [17] is adopted to 
evaluate performance degradation of power battery 
pack. The attenuation of SOH under multi-stresses is [18]: 

Δ𝑆𝑂𝐻𝑡 = −
|𝐼𝑡|Δ𝑡

2𝑁(𝑐, 𝑇)𝐶𝑛
(5) 

where 𝑁  is the total number of cycles before the 
battery failure, and Δ𝑡 is current duration. 𝑇 is battery 
internal temperature which is assumed to be constant 
due to appropriate thermal management system. The C-
rate (𝑐) has significant impact on capacity loss, hence the 
Arrhenius equation is given as follows: 

Δ𝐶𝑛 = 𝐵(𝑐) ∙ exp (−
𝐸𝑎(𝑐)

𝑅𝑇
) ∙ 𝐴ℎ𝑧 (6) 

where Δ𝐶𝑛(%)  is loss of capacity, 𝐵  denotes pre-
exponential factor which is dependent on C-rate. Its 
value can be referred to Table 2. 𝑅 is ideal gas constant, 
𝑧  is power-law factor, 0.55. 𝐴ℎ  is the accumulated 
ampere-hour throughput, and 𝐸𝑎(𝑐)  is the activation 
energy defined by: 

𝐸𝑎(𝑐) = 31700 − 370.3 ∙ 𝑐 (7) 

The life end of power battery is reached when its 
capacity drops by 20%, 𝐴ℎ and 𝑁 can be derived as: 

𝐴ℎ(𝑐) = [
20

𝐵(𝑐)
∙ exp (−

𝐸𝑎(𝑐)

𝑅𝑇
)]

1 𝑧⁄

(8) 

𝑁(𝑐) = 3600 ∙ 𝐴ℎ(𝑐, 𝑇) 𝐶𝑛⁄ (9) 

Finally, the degradation can be calculated by Eq. (5). 
Table. 2 Reference value of B(c) 

2.2 Health-Aware Ems Based on SAC 

2.2.1 Soft actor-critic algorithm 

The SAC is one of the most popular off-policy DRL 
methods with soft policy iteration. It is based on actor-
critic framework, in which the actor network output a 
stochastic policy to enhance exploration. Unlike original 
actor-critic architecture, the SAC agent maximizes the 
information entropy of actions apart from conventional 
cumulative rewards. The state-action value function is 
given by the soft Bellman equation [19]: 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾𝐸𝑠𝑡+1,𝑎𝑡+1 [
𝑄(𝑠𝑡+1, 𝑎𝑡+1)

−𝛼 log(𝜋(𝑎𝑡|𝑠𝑡))
] (10) 

where 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡  are the state, action, reward with 
respect to step t respectively, and 𝑠𝑡+1, 𝑎𝑡+1  are the 
state and action after state transition. 𝛾  is discount 
factor, and 𝐸 denotes mathematical expectation. 𝛼 is 
the temperature factor to adjust the relative importance 
of the entropy term versus the reward, and it is tuned 
automatically through neural network. 𝜋(𝑎𝑡|𝑠𝑡) is the 
policy to be learned, and the optimal policy is defined as: 

c 0.5 2 6 10 

B(c) 31630 21681 12934 15512 



4 

𝜋∗ = argmax
𝜋
∑𝐸(𝑠𝑡,𝑎𝑡)~𝜌𝜋[𝑟𝑡 − 𝛼 log(𝜋(𝑎𝑡|𝑠𝑡))]

𝑡

(11) 

Neural networks are employed to approximate the 
Q-value function, and the policy can be modeled as a
Gaussian distribution with mean and covariance given by
neural networks. Thus, the actor and critic can be
optimized by stochastic gradient descent during back
propagation. The Q-value function parameters 𝜃 can be
trained to minimize the soft Bellman residual:

𝐽𝑄(𝜃) = 𝐸(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)~𝑀

1

2
[𝑄(𝑠𝑡 , 𝑎𝑡) − [𝑟𝑡 + 𝛾 (

𝑄′(𝑠𝑡+1,𝜋(𝑠𝑡+1))

−𝛼 log(𝜋(𝑎𝑡+1|𝑠𝑡+1))
)]]

2

(12)

where M is experience replay pool, and (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1) 
are minibatches sampled from it randomly. The target 
critic network 𝑄′ is utilized to accelerate and stabilize 
training process, and its parameter 𝜃′ is updated softly: 

𝜃′ ← (1 − 𝜏)𝜃′ + 𝜏𝜃 (13) 

where 𝜏 is step factor to control update amplitude. 
The policy network parameters 𝜙  is updated by 

minimizing: 

𝐽𝜋(𝜙) = 𝐸𝑠𝑡~𝑀 [𝐸𝑎𝑡~𝜋𝜙 [
𝛼 log(𝜋(𝑎𝑡|𝑠𝑡))

−𝑄(𝑠𝑡 , 𝑎𝑡)
]] (14) 

Temperature factor 𝛼  is regulated automatically, 
its gradients is computed with the following objective: 

𝐽(𝛼) = 𝐸𝐸𝑎𝑡~𝜋𝑡
[−𝛼𝑙𝑜𝑔𝜋𝑡(𝑎𝑡|𝑠𝑡) − 𝛼𝐻̅] (15)

where target entropy 𝐻̅ is the opposite number of 
action dimension, i.e., -1 in this paper. 

2.2.2 States and actions 

The states vector contains important information to 
decision-making, and is inputted into Q-value function 
and policy network. It is defined as: 

𝑠 = [𝑆𝑂𝐶, 𝑆𝑂𝐻, 𝑎, 𝑣, 𝑃𝐹𝐶𝑆] (16) 

While the continuous control action is output power 
of fuel cell engine: 𝑃𝐹𝐶𝑆 ∈ [0,60]𝑘𝑊. 

2.2.3 Reward function 

At each moment t, the SAC agent observes current 
state 𝑠𝑡 , then executes the action 𝑎𝑡  from the policy 
network, and obtains a numeric reward 𝑟𝑡  from the 
environment. Afterwards, the interactive scene steps 
into next state. A fine-designed reward function is of 
great significance to guide agent to learn optimal policy. 

There are three primary optimization objectives of 
energy management: 1) save fuel; 2) reduce degradation 
of fuel cell and power battery; 3) keep SOC margin. 
Therefore, the reward function is designed as follows: 

𝑟𝑡 = −[
𝛽1𝑚̇(𝑡) + 𝛽2𝐷𝐹𝐶(𝑡) + 𝛽3Δ𝑆𝑂𝐻(𝑡)

+𝜔[𝑆𝑂𝐶(𝑡) − 𝑆𝑂𝐶𝑡𝑎𝑟]
] (17) 

where 𝛽1, 𝛽3, 𝛽3 are H2 price, replacement cost of fuel 
cell system, and replacement cost of power battery pack 
respectively. And 𝑚̇(𝑡), 𝐷𝐹𝐶(𝑡), Δ𝑆𝑂𝐻(𝑡) denote H2 

consumption, fuel cell degradation, power battery 
degradation at time step t respectively. The weight 
coefficient 𝜔 determines the relative importance of the 
money cost versus SOC value. 𝑆𝑂𝐶𝑡𝑎𝑟 is target value of 
SOC, and is dependent on charge mode as follows: 

𝑆𝑂𝐶𝑡𝑎𝑟 = {
𝑆𝑂𝐶0 − 0.2, 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑛𝑔 𝑚𝑜𝑑𝑒
𝑆𝑂𝐶0, 𝑐ℎ𝑎𝑟𝑔𝑒 𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑚𝑜𝑑𝑒

(18) 

2.3 Simulation Results 

Since there is an appropriate value of ω waiting for 
exploration, numerous simulation experiments were 
executed in this chapter firstly to obtain balance of 
money cost versus SOC value in charge sustaining (CS) 
mode. Then, the previously determined ω is tested in 
charge depleting (CD) mode. Note that the experiments 
were implemented under the China typical urban driving 
cycle (CTUDC) as shown in Fig. 5. 

Fig. 5 China Typical Urban Driving Cycle 

2.3.1 Exploration of weight coefficient 

Given the CTUDC and vehicle configurations, the 
requested power curve of vehicle can be calculated at 
each moment as shown in Fig. 6. And it is the energy to 
be managed by the proposed method. 

Fig. 6 Requested power curve of the bus 

Fig. 7 Reward curves of different 𝜔 
The core idea of deep reinforcement learning is to 

guide the agent to learn a policy with the maximum 



5 

expectation of discounting reward. Thus, the reward 
curve can indicate the training performance. As shown in 
Fig. 7, regardless of the 𝜔 value, the proposed strategy 
can converge rapidly and stably. 

The goal of energy management is to reduce the 
overall driving cost as much as possible. Unlike other 
types of HEV with internal combustion engine, the 
performance of fuel cell system onboard vehicle is easier 
to degrade and more expensive, which should be 
considered into EMS. Thus, the overall driving cost 
consists of three parts: hydrogen consumption, power 
battery degradation, and fuel cell degradation. The price 
of hydrogen is 55 RMS per kilograms, the replacement 
cost of power battery pack and fuel cell stack are 20000 
RMB and 300000 RMB respectively. 

Fig. 8 Money spent per 100km of different 𝜔 

Fig. 9 Equivalent H2 cost per 100km of different 𝜔 
Table 3 Comparison of different 𝜔 (SOC0=0.5) 

𝜔 
Final 
SOC 

H2 

Cost 
(g) 

Battery 
Pack SOH 

Fuel Cell 
System SOH 

Money 
Cost 

(￥/100km) 

10 0.2773 6071.1 0.999865 0.9999496 356.52 
15 0.2747 6063.4 0.999866 0.9999498 353.44 
20 0.2753 6065.0 0.999867 0.9999490 357.77 
25 0.2606 5988.8 0.999868 0.9999570 308.22 
30 0.2775 6076.3 0.999865 0.9999488 360.15 
35 0.2856 6109.9 0.999821 0.9999435 408.17 

Fig 8 illustrates that the most economic policy can be 
learned when 𝜔 = 25, and Fig. 9 supports this point 
with the minimal equivalent hydrogen consumption per 
100 km curve. As we can see in Table 3, with the initial 
SOC equaling to 0.5, when 𝜔 = 25 , the equivalent 
hydrogen consumption is 5988.8g, which saves 2% 
compared to that of 𝜔 = 35; the overall money spent is 
308.22 RMB, which is 75.5% of that when 𝜔 = 35. Both 

the least equivalent hydrogen and overall money spent 
manifest that a near-optimal policy is realized under 
current circumstance, and 25 is determined as the 
preferred value of 𝜔 in later experiments. 

2.3.2 Charge depleting mode 

Fig. 10 SOC trajectory of different initial SOC, CD mode 
Table 4 Comparison of different SOC0 (𝜔=25, CD mode) 

SOC0 
SOC 

consumption 
Money Cost 

(￥/100km) 

0.95 0.1793 323.86 
0.9 0.1849 314.99 
0.8 0.1932 331.58 
0.7 0.1978 330.88 
0.6 0.1721 355.42 
0.5 0.1881 308.22 
0.4 0.1766 359.62 
0.3 0.1771 484.65 

Mean 0.1836 351.15 

Continue Table 4 

SOC0 
H2 

Cost (g) 
Battery 

Pack SOH 

Fuel Cell 
System 

SOH 

0.95 6043.6 0.999904 0.9999526 

0.9 6014.7 0.999898 0.9999542 

0.8 6048.4 0.999892 0.9999519 

0.7 6032.3 0.999886 0.9999522 

0.6 6083.6 0.999880 0.9999498 

0.5 5988.8 0.999868 0.9999570 

0.4 6051.5 0.999838 0.9999503 

0.3 6164.0 0.999673 0.9999396 

Mean 6053.4 0.999855 0.9999508 

Charge depleting mode is a very common operation 
mode during driving when SOC is sufficient. Since the 
weight coefficient is determined, set the initial value of 
SOC as [0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3] respectively, 
and other configurations are the same. Fig. 10 shows SOC 
trajectories of different initial SOC values in CD mode, 
from where we see steady and uniform decrease of 
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charge. Table 4 shows SOC cost and money cost in 
different initial SOC. The average money cost per 100 km 
is 351.15 RMB, and average equivalent hydrogen 
consumption is 6053.4 g, and average SOC cost is 0.1836. 

As we can see in Table 4, the most economical driving 
strategy is when SOC0 is 0.95 and 0.9, and the money 
spent increase gradually with the reduce of initial SOC. 
This is mainly because that the EMS prefers to use fuel 
cell system to drive the bus when SOC is low, and the 
replacement cost of fuel cell stack is much more 
expensive than that of power battery pack. This 
phenomenon suggests that the power battery system 
should be preferred to drive the vehicle when the charge 
is sufficient. 

2.3.3 Charge sustaining mode 

The hybrid electric bus should maintain certain 
charge margin during driving to cope with emergencies 
such as running out of fuel, especially when SOC is low. 
Thus, EMS performance in CS mode should also be taken 
into consideration. Keep the configuration as previous 
experiments, and modify SOC reward function in 
Equation (18). Figures in Fig. 11 shows that the proposed 
strategy can maintain the SOC value around initial value 
whatever SOC0 is. The average consumption of SOC in CS 
mode is -0.0125, which also means that the SOC is kept 
close to its initial value. 

However, the average money cost per 100 km is 
858.39 RMB, which is 2.44 times as much as CD mode, 
and equivalent hydrogen consumption is 7373.2g, which 
is 1.22 times as much as CD mode does, as the data listed 
in Table 5. This is because that fuel cell system is used 
intensively in order to maintain charge margin while 
satisfying the power demand of driving. And this leads to 
more hydrogen consumption and more serious 
degradation of fuel cell system which is much more 
expensive. And the SOH of power battery and fuel cell 
both performs worser than that of CD mode. 

These results suggest that running the FCHEV in low 
charge mode for long time should be avoided, as this can 
cause much more degradation of both power battery 
and fuel cell, and thus increase the cost of operation and 
maintenance. 

Fig. 11 SOC trajectory of different initial SOC, CS mode 

Table 5 Comparison of different SOC0 (𝜔=25, CS mode) 

SOC0 
SOC 

consumption 

Money Cost 

(￥/100km) 

0.25 -0.0125 815.52 
0.2 -0.0129 837.36 

0.15 -0.0137 877.82 
0.1 -0.0107 902.89 

Mean -0.0125 858.39 

Continue Table 5 

SOC0 
H2 

Cost (g) 
Battery 

Pack SOH 

Fuel Cell 
System 

SOH 

0.25 7383.6 0.999631 0.9999090 
0.2 7408.2 0.999568 0.9999089 

0.15 7357.2 0.999484 0.9999069 
0.1 7343.9 0.999445 0.9999045 

Mean 7373.2 0.999532 0.9999073 

2.4 Conclusions 

A novel health-aware energy management strategy 
for FCHEV base on SAC is proposed for the first time in 
this paper. Keeping charge margin and reducing overall 
driving cost are the two goals in the multi-objective 
optimization problem, where overall driving cost consists 
of hydrogen consumption and health degradation of 
both lithium-ion power battery and fuel cell system. 
After numerous explorations for weight coefficient, the 
trained strategy performs well both in charge sustaining 
and charge depleting modes. The main conclusions are 
as follows: 

(1) The health state of power battery pack and fuel
cell system should be taken into consideration, due to 
their disadvantages of easy degradation and expensive 
cost. 

(2) Under simulation condition, the average money
costs per 100 km are 351.15 RMB in CD mode and 858.39 
RMB in CS mode respectively; and the average hydrogen 
consumption are 6053.4 g in CD mode and 7373.2 g in CS 
mode respectively. 

(3) Simulation results suggest that the power battery
system should be preferred to drive the FCHEV when the 
charge is sufficient, and avoid running the vehicle in low 
charge for long time. 
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