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ABSTRACT 
 With the increasing frequency of extreme weather 
events, promoting crop production’s resilience to 
combat climate disaster is urgent for global food 
security, however, the driving factors of crop 
production’s resilience are not yet clear to figure out the 
effective measures to improve it. At the same time, the 
benefits of agricultural mechanization, especially on 
resilience are not fully adopted, which may offer 
solutions for climate change adaptation. Here, we 
propose a crop production’s climate resilience driving 
factors assessment framework based on modified 
Pressure-State-Response concept and two-way fixed 
effect model. Taking China as the study area, we figure 
out the spatio-temporal evolution of crop production’s 
climate resilience and analyze the effect of rapidly 
developed agricultural mechanization on it. Our primary 
results show that food production’s climate resilience in 
China has been promoted since 2005, although drought 
and flooding events are gradually becoming more 
frequent. Complementarity among Chinese provinces 
enhances overall national food production’s climate 
resilience, to which Jilin Province and Xinjiang Province 
contributed the most. Due to timely policy adjustments, 
the autumn harvest has played an increasingly important 
role in enhancing resilience. Besides, agricultural 
mechanization played a significant role in guaranteeing 
food productivity to tackle climate impact. By analyzing 
the effect of agricultural mechanization on food 
production’s climate resilience in China, this study can 
provide insights for strengthening agriculture sector’s 
resilience and thus avoiding disruptions in food supply 
chains. 
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1. INTRODUCTION
Food systems are highly vulnerable to weather

conditions. With more extreme weather events and 
increased unpredictability of weather patterns, climate 
change has become a serious threat to global food 
security, successively affecting the achievement of 
sustainable development goals, and poverty eradication. 
Therefore, food systems need transitions to be more 
productive and reliable, with more efficiency in inputs, 
less variability and greater stability in their outputs, and 
resilience to risks, shocks and long-term climate 
variability. 

The food system is a complex web of activities 
involving production, processing, transport, and 
consumption. Among them, food production, the supply 
side of food, is the most affected by climate change and 
also the most essential for food security. Besides, grain 
crops play the leading source of plant protein in the 
human diet. Promoting climate resilience in crop 
production can effectively deal with the worldwide 
dilemma of hunger and safety. However, potential 
approaches to strengthen this resilience are not fully 
figured out and adopted. 

Current research about the evaluation of food 
resilience involving socioeconomic factors such as GDP 
per capita, to show the ability to resist hazards, will fall 
into the trouble of multicollinearity, thus preventing us 
to identify the drivers of resilience. Here, we propose a 
crop production’s climate resilience driving factors 
assessment framework based on modified Pressure-
State-Response concept and two-way fixed effect model. 
Taking China as the study area, we figure out the spatio-
temporal evolution of crop production’s climate 
resilience and analyze the effect of rapidly developed 
agricultural mechanization on it. 

2. MATERIALS AND METHOD

2.1 Crop production’s climate resilience driving factors 
assessment framework 
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There are three major approaches for the evaluation 
of resilience: comprehensive evaluation methods based 
on the component capabilities of resilience, simulation 
analysis, and econometric analysis. Most crop 
production is on an annual cycle and weather conditions 
varied from year to year, which happens to provide us 
with realistic and historical weather data, disaster data 
and crop production data to evaluate the climate 
resilience in crop production (Figure 1). We define crop 
production’s climate resilience as the ability to safeguard 
regular crop yield even under severe shocks. 

 

Fig. 1. Framework 

The Pressure-State-Response (PSR) framework is a 
model that covers causes and effects influencing a 
measurable state (Hammond et al., 1995), which is 
widely adopted in the construction of indicator systems. 
The PSR framework include three categories of 
indicators, which are the Pressure, State and Response 
indicators respectively (OECD,1993). The Pressure 
indicators describe the driving factors of changes in the 
evaluated object, which describe the impacts and 
stresses from the external factors. The State Indicators 
mainly refer to the current situation of the evaluated 
object, which reflects the degree of impacts from the 
pressure. The Response indicators reflect the 
performance of the evaluated object in order to mitigate, 
prevent or recover from the impacts of pressure. Here, 
we modified the concept of Response to be the ultimate 
performance of crops, that is the crop yield, rather than 
human intervention activities. Resilience is assessed by 
the changes in crop status from seeding to harvest. 

Then with time series data, econometric methods 
offer us solutions to figure out the critical drivers of 
resilience change and identify the effect of agricultural 
mechanization on it. 

2.2 Indicators for evaluating crop production’s climate 
resilience 

We built up a comprehensive indicator system based 
on the PSR concept as shown in Table 1 to evaluate crop 

production’s climate resilience. To reflect the pressures 
from climate change, several agroclimatic variables were 
chosen to characterize meteorological disasters. For 
example, precipitation anomaly percentage based on 
annual rainfall data was used to measure the extent of 
drought and flooding. The sum temperature deviation 
from May to September was applied to reflect the 
pressure from freezing. The mean temperature form July 
to August represents the pressure from high 
temperature. In addition, to describe the state of the 
post-disaster crop system, we used the damage rate and 
the hazard rate to measure the extent of crop production 
losses. The damage rate refers to the ratio of crop area 
reduction due to disaster to total sown area. Besides, we 
consider four types of hazards affected crop production, 
including flood, drought, wind and hail, and frost. Finally, 
the yield characteristics of crop system at the end of the 
year could reflect its performance after receiving and 
tackling disaster shocks during the last year, 
corresponding to the concept of response in PSR. The 
annual crop yield, growth rate of crop yield, crop yield 
per hectare and crop yield per capita were chosen as the 
Response indicators. 

Table 1 Indicators of crop production’s climate resilience 
based on PSR concept 

PSR 
concept 

Indicators Meaning & Calculation 

Pressure 

Drought and 
flood 

𝐼𝑝𝑎 = |
𝑅𝑖−�̅�

�̅�
|  × 100% , where 𝐼𝑝𝑎  is 

precipitation anomaly percentage, 𝑅𝑖  is 
the rainfall in month 𝑖 , �̅�  is average 
precipitation in the same period of the 
calendar year 

Heat wave Average temperature during July to 
August 

Freezing 𝑡𝑑 = |
𝑇𝑖−�̅�

�̅�
|  × 100%,  where 𝑡𝑑  is 

temperature deviation from May to 
September, 𝑇𝑖   is the sum of 

temperature from May to September，�̅� 

is average temperature during the same 
period of the calendar year 

State 

Disaster rate The ratio of yield reduction due to 
disaster to total sown area 

Hazard rate Affected area due to disaster to total 
sown area, including flood, drought, wind 
and hail, and frost 

Response 

Crop yield Crop yield of cereals, potatoes and beans 
of China 

Growth of 
crop yield 

Annual growth rate of crop yield 

Crop yield 
per area 

Crop yield per hectare 

Crop yield 
per capita 

Crop yield per capita 
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2.3 Weighting and comprehensive evaluation 

Evaluating climate resilience of food production 
based on multiple indicators is a kind of multiple criteria 
decision making (MCDM) problems. For MCDM, the 
weight of the indicators is crucial to measure their 
importance. The entropy weight (IEW) method based on 
the information provided by each indicator can 
objectively determine the weight. Besides, for decision 
making, Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS) is a practical technique for 
ranking and selecting a number of possible alternatives 
via measuring Euclidean distances. The TOPSIS is based 
on the concept that the chosen alternative should have 
the shortest distance from the positive ideal solution 
(PIS) and the farthest distance from the negative ideal 
solution (NIS). In this study, we determined the weights 
of indicators using IEW, and identified the ranking of 
alternative by the TOPSIS. 

First, we utilized range standardization to normalize 
different indicators. 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗− 𝑚𝑖𝑛
1≤𝑗≤𝑛

𝑥𝑖𝑗

𝑚𝑎𝑥
1≤𝑗≤𝑛

𝑥𝑖𝑗− 𝑚𝑖𝑛
1≤𝑗≤𝑛

𝑥𝑖𝑗
  (1) 

𝑋′ = (𝑥𝑖𝑗
′ )𝑚×𝑛  is the matrix after range 

standardization; max
1≤𝑗≤𝑛

𝑥𝑖𝑗  , min
1≤𝑗≤𝑛

𝑥𝑖𝑗   is the maximum 

and the minimum value in evaluation index j 
respectively, the value of 𝑋′ is 0 ≤ 𝑥𝑖𝑗

′ ≤ 1. 

Then, we calculated the information entropy: 

𝐻𝑗 = −(∑ 𝑓𝑖𝑗𝑙𝑛𝑓𝑖𝑗
𝑚
𝑖=1 ) 𝑖 = 1,2, ⋯ , 𝑚; 𝑗 = 1,2 ⋯ , 𝑛 (2) 

Next, according to the value of variation degree, we 
calculated deviations in the coefficients of indicators j, 
namely G𝑗: 

𝐺𝑗 = 1 − 𝐻𝑗  𝑗 = 1,2 ⋯ , 𝑛 (3) 
The deviation degree of indicator j is greater if the 

value of Hj  is smaller. Generally speaking, if the 

deviation degree of index j  is higher, the information 
entropy Hj is lower, which indicates that the more the 

information index j  provides, the greater the index j 
weight is. The weight 𝑤𝑗 is defined as: 

𝑤𝑗 =
𝐺𝑗

∑ 𝐺𝑗
𝑛
𝑗=1

=
1−𝐻𝑗

𝑛−∑ 𝐻𝑗
𝑛
𝑗=1

 (4) 

After getting the weight 𝑤𝑗 , we multiple weight 

with normalization matrix 𝑋′ = (𝑥𝑖𝑗
′ )𝑚×𝑛  and can get 

𝑋+ and 𝑋− to be the basis to calculate the distances. 
The PIS 𝑋+  indicates the most preferable alternative 
while the NIS 𝑋−  indicates the least preferable 
alternative. The formulas are as follows: 

𝑋+ = ( 𝑚𝑎𝑥
1≤𝑖≤𝑚

𝑥𝑖1 , 𝑚𝑎𝑥
1≤𝑖≤𝑚

𝑥𝑖2 , ⋯ , 𝑚𝑎𝑥
1≤𝑖≤𝑚

𝑥𝑖𝑛)      (5) 

𝑋− = ( 𝑚𝑖𝑛
1≤𝑖≤𝑚

𝑥𝑖1 , 𝑚𝑖𝑛
1≤𝑖≤𝑚

𝑥𝑖2 , ⋯ , 𝑚𝑖𝑛
1≤𝑖≤𝑚

𝑥𝑖𝑛)      (6) 

The n-indices evaluation distance can measure the 
separation from the PIS and NIS for each alternative. 

𝑑+ = √∑ 𝑤𝑗(𝑥𝑖𝑗 − 𝑥𝑗
+)2𝑛

𝑗=1  𝑖 = 1,2, ⋯ , 𝑚; 0 ≤ 𝑑𝑖
+ ≤ 1

 (7) 

 𝑑− = √∑ 𝑤𝑗(𝑥𝑖𝑗 − 𝑥𝑗
−)2𝑛

𝑗=1  𝑖 = 1,2, ⋯ , 𝑚; 0 ≤ 𝑑𝑖
− ≤ 1

 (8) 
Finally, we calculating the relative closeness 𝑐𝑖  to 

the ideal solution. 

𝑐𝑖 =
𝑑𝑖

𝑑𝑖
−+𝑑𝑖

+ ;  𝑖 = 1,2, ⋯ , 𝑚; 0 ≤ 𝑐𝑖 ≤ 1   (9) 

If alternative 𝑖  is the PIS, then 𝑐𝑖 11; however, if 
alternative 𝑖 is the NIS, then 𝑐𝑖 = 0. In other words, if 
the value of 𝑐𝑖 is closer to 1, the alternative 𝑖 will be 
closer to the PIS. A set of alternatives can then be ranked 
according to the descending order of 𝑐𝑖. 

3. RESULTS AND DISCUSSION 

3.1 National crop production conditions and climate 
resilience 

Figure 2 and Figure 3 presents the growing 
conditions and weather shocks to crop production in 
China from 1995-2020. It’s clear that flooding and 
drought has become more frequent and it’s common to 
face heat wave in summer which will affect crops.  

 

Fig. 2. Weather conditions in China during 1995-2020 

 

Fig. 3. Agricultural loss by disasters in China during 1995-2020 
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Fig. 4. Crop yield in China during 1995-2020                    Fig. 5. Crop production’s climate resilience in China 

 

Fig. 6. Crop production’s climate resilience in 31 Provinces of China during 1997-2020 

Under climate shocks, the loss rate of crops in China 
has decreased significantly and we have witnessed a phase 
of double growth in crop yields (Figure 4). As shown in 
Figure 5, since 2005 China's climate resilience in crop 
production has steadily improved with more sown area at 
the beginning of the year and more contribution of 
autumn harvest crop. Autumn grains support China's food 
security. 

3.2 Provincial crop production’s climate resilience 

Figure 6 shows the provincial results during 1997-
2020. It can be found that Xinjiang, Jilin, Liaoning, Jiangsu 

and Shandong are source of China’s promotion in crop 
production’s climate resilience. Especially Xinjiang, its 
resilience is increasing with highest efficiency in crop 
yields. 

3.3 Effect of agricultural mechanization on crop 
production’s climate resilience 

Figure 7 present the scatter graph of agricultural 
mechanization and crop production’s climate resilience. It 
can be found that they are positively related, meaning 
more advance agricultural mechanization showing higher 
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climate resilience in crop production. And empirical 
analysis will aid us to identify their causal relationship. 

 

Fig. 7. Scatter graph and linear relationship between 
agricultural mechanization and crop production’s climate 

resilience 

4. CONCLUSION 
China plays an important role in the global food 

supply. Understanding the state of China's crop 
production’s climate resilience and the driving factors are 
critical to global food security. Here, we propose a crop 
production’s climate resilience driving factors assessment 
framework based on modified Pressure-State-Response 
concept and two-way fixed effect model. Taking China as 
the study area, we figure out the spatio-temporal 
evolution of crop production’s climate resilience and 
identify the positive effect of rapidly developed 
agricultural mechanization on it. However, the indicator 
selection in this paper is simplified and we should obtain 
more agricultural management data to find more potential 
drivers. We will deepen our understanding in this field and 
provide insights for strengthening agriculture sector’s 
resilience and thus avoiding disruptions in food supply 
chains. 

ACKNOWLEDGEMENT 
This work was supported by the National Natural 

Science Foundation of China (Nos. 72091511). 

REFERENCE 
[1] OECD, 1993. Core Set of Indicators for Environmental 
Performance Reviews: A Synthesis Report by the Group on 
the State of the Environment. Environment Monographs, 
Vol. 83. Organization for Economic Co-operation and 
Development, Paris. 
[2] Hammond, A., Adrianse, A., Rodenburg, E., Bryant, D., 
Woodward, R.,1995. Environmental Indicators: A systemic 
approach to Measuring and Reporting on Environmental 

Policy Performance in the Context of Sustainable 
Development. World Resources Institute, Washington, DC. 
[3] Wolfslehner B, Vacik H. Evaluating sustainable forest 
management strategies with the Analytic Network Process 
in a Pressure-State-Response framework. J ENVIRON 
MANAGE. 2008;88:1-10. 
[4] Zhang H, Gu C, Gu L, Zhang Y. The evaluation of tourism 
destination competitiveness by TOPSIS & information 
entropy?A case in the Yangtze River Delta of China. 
TOURISM MANAGE. 2011;32:443-451. 
[5] Tendall DM, Joerin J, Kopainsky B, Edwards P, Shreck A, 
Le QB, et al. Food system resilience: Defining the concept. 
Global Food Security. 2015;6:17-23. 
 


