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ABSTRACT 
Accurate energy consumption prediction is a 

prerequisite for effectively dispatching distributed 
power sources. For a building, due to the frequent 
fluctuations derived from many dynamic factors, the 
precise energy consumption prediction is still facing 
challenges. Existing methods usually only use common 
recurrent neural networks to predict building energy 
consumption, consider common recurrent neural 
networks model does not have the ability to extract 
spatial features and they have a long-term memory 
problem, so they have limitations to deal with long term 
task. To overcome these challenges, in this paper, we 
propose a hybrid model to predict the cooling 
consumption of a building. 

Our hybrid model has the merits of convolutional 
neural network and gated recurrent unit in capturing 
spatial-temporal features. Experiment results show that 
our hybrid model has the best performance, compared 
with other methods. The result will benefits managers to 
make reasonable scheduling of power and equipments. 

Keywords: Building energy consumption, Load 
forecasting, Prediction, Deep neural network, CNN, 
Recurrent 
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Abbreviations 

Conv 

Conv2D 

TCN 

R2 

One-dimensional Convolution layer 

two-dimensional convolution 

Temporal Convolutional Network 

R-Square

RMSE Root Mean Square Error 

Symbols 

𝑦𝑖,  �̃�𝑖

n 

Actual values, Predicted values 

Sample number 

1. INTRODUCTION
With rapid industrial development, climate change

has become one of the world's most relevant and urgent 
issues. Carbon emissions are an essential driver of 
climate change. Among the three largest carbon 
emitters, i.e., transportation, industry, and construction, 
construction is one of the main areas for carbon 
emissions[1,2].Thus, reducing carbon emissions from 
building sectors will significantly improve the current 
situation.  

Building carbon emissions involve almost all aspects, 
e.g., construction, operation, and maintenance. The
future power supply structure will contain a large
proportion of renewable electricity, for example,
building photovoltaic (PV) power. This enables buildings
to consume zero-carbon power if we can predict building
consumption and provide renewable power in advance.

However, the random fluctuation characteristic of 
scenery power generation makes the source side of the 

power system less controllable — the power balance 
changes from an unexpected single-side problem to a 
random double-side problem. At the same time, the 
large-scale PV source's access to the power grid may 
increase peak-to-valley difference. The overall shape of 
the grid load curve will be significantly changed. The 
short-time load fluctuation of the main power grid will 
be severe.  
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The new power balance is prone to supply and sales 
imbalance and damage to the grid. Predicting building 
energy consumption is one of the critical issues to 
alleviate this problem. 

For building sectors, the main energy consumption 
occurs in the building operation phase[3,4].  

In addition, building energy consumption is 
concerned with the Heating, Ventilation, and air 
conditioning (HVAC) system. 

HVAC energy consumption accounts for the most 
significant part of electricity consumption[5]. It especially 
needs to be considered in most public buildings and 
residential buildings. Focusing on the energy 
consumption of HVAC systems can ensure accurate 
prediction of the main changes in building electricity 
consumption and avoid interference of too many 
irrelevant features. 

The existing building energy consumption prediction 
methods can be divided into two categories, i.e., classical 
physic and data-based methods. The classical physic 
method is complex and suffers from limited precision. 
There are also problems in data acquisition and data 
quantify[6,7]. The data-based approach is a black-box 
model that only considers the relationship between 
historical data and future energy consumption. Time 
series models are typical representatives of black box 
models[8]. In addition, Kalman filter[9], and statistical 
regression are also typical representatives of such 
methods[10]. 

Artificial intelligence technologies have recently 
been widely introduced for building energy consumption 
prediction. Recurrent neural networks (RNNs) are most 
suitable for addressing such time-series regression tasks. 
Long and short-term memory neural network (LSTM) is a 
representative RNNs with powerful performance.  

Gated recurrent unit (GRU) neural network 
streamlines the structure of LSTM but is more efficient 
than LSTM. Most studies use GRU networks to deal with 
such problems.[11] However, both LSTM and GRU are 
deficient for long-term memory prediction. Whereas 
building energy consumption data are often sampled 
with long time steps, so we hope to have a way to 
shorten the time step while ensuring that feature 
information is not lost. At the same time, the traditional 
rnn model cannot extract spatial features, and we also 
hope we can get spatial feature information for more 
accurate predictions.[12] 

In this work, we propose a hybrid prediction model 
for accurately predicting building energy consumption. 
In our model, a convolutional GRU (Conv GRU) neural 
network is exploited to address the shortcomings of 
RNNs. The Conv GRU model has the merits of CNN and 
RNN in capturing spatial-temporal features. It is 

expected to achieve considerable performance in the 
long-time-step consumption prediction of a building. 

 
2. METHODOLOGY  

2.1 Overview of the proposed approach 

The purpose of this paper is to investigate a 
commonly used energy consumption prediction model 
for public buildings.  

The performance of the neural network model 
depends mainly on the structure of the network and the 
adjustment of various parameters, so the workflow of 
the experimental method is shown in Figure 1. 

 
Fig. 1 Workflow of the proposed methods 

 
The pre-processing data stage includes missing data 

processing, outlier processing, and normalization. 
In feature engineering, the variation of building 

energy consumption is influenced by many factors, 
which can be divided into internal and external factors. 
We selected the most relevant features through 
correlation analysis to improve the prediction 
accuracy[13].In terms of model selection, this paper 
iterates each hyperparameter of all models several 
times. It builds improved models based on convolutional 
and RNN to make predictions at different time steps. 

The evaluation functions in this paper are selected as 
RMSE and R2, and their formulas are shown as follows. 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̃�𝑖)2𝑛

𝑖=1

𝑛
 (1) 
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2.2 RNN design for extracting temporal features 

The neural network used in deep learning comprises 
the input layer, output layer, and hidden layer. The 
complex parameter space is fitted by combining a variety 
of linear activation functions and hidden layers in each 
layer. To complete the task, the network is continuously 
trained to achieve a better solution through 
backpropagation optimization parameters. Many 
researchers have applied Artificial neural networks 
(ANN) to building energy consumption prediction and 
achieved good results[14,15]. All ANNs are feedforward 
neural networks. RNN has a reverse connection, and the 
generated input is sent back to itself. The same network 
is trained and shares weight parameters at each time 
step, which gives the network the possibility of 
"memory." 

The LSTM is a practical improvement to the simple 
RNN, preserving the recursive nature of the RNN through 
the interaction of forgetting gates, input gates, and 
output gates and avoiding, to a considerable extent, the 
gradient disappearance and gradient explosion problems 
commonly encountered in recurrent networks. 

The gated loop unit is a simplified version of the 
LSTM, which combines the functions of the LSTM 
forgetting gate and input gate, reducing the network 
parameters and speeding up the training while the 
model still performs similarly to the LSTM. 
 

2.3 CNN model design for spatial feature extraction 

Convolutional networks are networks that specialize 
in processing grid-like data. Time series data (1D 
dimension) and image data (2D dimension) are data 
structures that are well-suited for convolutional network 
applications. In general, convolutional operations can 
learn the features of the data and aggregate the low-
level basic features into higher-level semantic features to 
achieve outstanding recognition results.  

The convolution operation of time series can 
aggregate the features in long time steps in shorter time 
steps by setting the convolution kernel and step size. This 
method can effectively reduce the length of time steps 
and help GRU networks perform better. It is even 
possible to go one step further and discard the recurrent 
layer entirely and let the network use all convolutional 
layers, using the method of inflated convolution so that 
the convolutional layer has the same effect as RNN. This 
network is called the Temporal convolutional network 
(TCN) [16] and is shown in Figure 2. 

 
Fig. 2 Outline diagram of temporal convolutional 

network (TCN) 
 

3. EXPERIMENT SETUP AND DATA PROCESSING 

3.1 Data description 

The dataset used in the pilot study is the historical 
operational data of a building water cooling system in a 
commercial facility, ranging from April 1, 2020, at 0:00 to 
June 30, 2021, at 24:00. The data is sampled every 15 
minutes during this period. The dataset will be divided 
into three groups in the ratio of 7:2:1, with 70% as the 
training set, 20% as the validation set, and 10% as the 
test set, containing 30643, 8755, and 4377 sample sizes, 
respectively. We set the prediction range to half an hour 
and 2 hours.  

To facilitate understanding of the data distribution, 
Figure 4 shows a heat map of each data. The purpose of 
using a heat map is to show the data distribution in the 
dataset and to give the researcher an intuitive global 
view of the data. The vertical coordinates in the figure 
represent all sampling times, and the horizontal 
coordinates do not define real meaning.  
 

 
Fig. 3 Heat map of dataset features 
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3.2 Data preprocessing 

To speed up network training and convergence, it is 
also necessary to reshape the data into the dimensions 
needed for RNN. We need to pre-process the data. First, 
for the missing values, the experiments took the nearest 
valid value to fill the way. Secondly for outliers, thanks to 
the powerful ability of neural networks, outliers do not 
bring too many negative impacts on the correct results 
as traditional statistical analysis[17], in addition, after the 
analysis of the data set, it is found that the main problem 
of this data set is more missing values, there are no 
outliers, so no special treatment of outliers is done in this 
paper. Third, to avoid the effect of the order of 
magnitude, the maximum-minimum method is used to 
scale all data in the range of 0 to 1. The formula is as 
follows. 

 

𝑋𝑛 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (3) 

 

The inverse normalization is needed to recalculate 
the error after completing the prediction of the data 
output from the network, and the inverse normalization 
formula is as follows. 

 
𝑋 = (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)𝑋𝑛 + 𝑋𝑚𝑖𝑛 (4) 

 
Finally, we set up sliding windows with window sizes 

of 96. sliced the entire data into window-sized sequential 
data and used the data two times after the window size 
as labels. 

 

3.3 Model setup 

In this paper, based on the background work, a 
standard GRU-based model, a hybrid model of 
Convolutional Gate recurrent unit (Conv GRU), a hybrid 
model of 2D convolution and fully connected 
layers(Conv2D Dense), a hybrid model of 2D convolution 
and GRU(Conv 2D GRU), and a TCN model are developed. 
All models used in the experiments were designed using 
Keras. Figure 4 and Figure 5 are two main model 
structures.  

 
Fig. 4 Framework of GRU model 

 
 

 
Fig. 5 Framework of the proposed Conv GRU mode 

 
Moreover, to fully demonstrate the model 

performance, 17 cases were designed in this paper to 
test the performance of four different models at 
different time steps for the same feature data. 

 

4. RESULT  

The experimental results of the hybrid model with 
the best effect of Conv GRU are shown in Figure 6 and 7. 
The red line represents the real energy consumption 
data, and the blue line represents the predicted data. 
Considering that the total of more than 4000-time steps 
is too long, to avoid images masking each other, each 
type of network is compared with the absolute data 
values separately. We also took the 1000th to 2000th-
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time step and enlarged it for a display to show the details 
of the prediction accuracy. 

 

Fig. 6 Performance of GRU on Test Set at 96 Time Steps 
 

 

Fig. 7 Performance of Conv GRU on Test Set at 96 Time 
Steps 

Both from Table 1, and Figure7, it can be concluded 
that the Conv GRU has the best performance at all time 
steps, and the version is improved compared to the 
ordinary GRU model, and the predicted value curves fit  
the actual value curves more closely. In addition, it is 
worth mentioning that although the hybrid network of 
Conv2D GRU does not achieve the best results, this 
network has the least fluctuation and the most stable 
model performance under all conditions. 

Finally, even under the condition of shorter time 
steps (96-time steps are used as an example in this 
paper) using the two models GRU and Conv GRU hybrid 
models for testing, The model performance still has a 
significant drop in predicting eight-time steps in the 
future. The R2 values are around 0.7, with an average R2 
decrease of about 20% compared to the task type with 2 
future time steps, and the RMSE values are about 1000, 
with an average RMSE increase of 2.5 times compared to 
the task type with 2 future time steps. 

 

5. DISCUSSION 

The current work aims to predict energy 
consumption in a commercial building using different 
machine-learning techniques.  

From the results, we can conclude that predicting 
the energy consumption beyond longer future time steps 
will significantly reduce model performance. The first 
reason is that the data for this task is sampled every 15 
minutes, and the selected features are highly correlated 
with the building energy consumption, this leads to a 
decline in model performance. So if we want to predict 
the average energy consumption of, for example, a day 
or a week in the future. In that case, we need to 
reprocess the original data separately. However, it does 
not meet the purpose of this paper, and the prediction 
for a longer time in the future can hardly be a practical 
help for monitoring grid security. 

From the aspects of the performance of each model, 
it can be analyzed that firstly, the Conv GRU model has 
the best performance with the R2 value of over 0.95 and 
the RMSE value of only 413. This is because the 
convolutional layer effectively aggregates the feature 
information while shortening the time step, which solves 
the problem of RNN's difficulty in remembering long-
time information and is the most suitable network model 

for such tasks. 
The fluctuation of the Conv2D GRU model is minimal 

under different conditions because its convolutional 
kernel can move between time steps and features, which 
has one more dimension than one-dimensional 
convolution. Feature information is extracted more fully, 
but it also increases the time step length, which leads to 
the degradation of model performance. This model is 
suitable for task types with a large variety of features and 

Table 1 Comparison of models perform 

 

  GRU Conv GRU Conv2D GRU Conv2d Dense TCN 

96 times 
step 

R2 0.932 0.959 0.947 0.951 0.935 

RMSE 512.5 413.9 496.4 447.7 498.7 
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a small amount of information contained in a single 
feature. 

Considering that the above RNN is incapable of 
handling long time steps and the two-dimensional 
convolution must increase the value of the data time 
step dimension, this paper is supplemented by designing 
a comparison experiment of the Conv2D Dense model. 
According to the results, it can be concluded that the 
overall effect of the model of Conv2D Dense is better 
than that of the model of Conv2D GRU. The RMSE value 
can be decreased by about 50. Still, the number of 
parameters of the Conv2D Dense model will be about 
100 times more than that of the model of 2D convolution 
plus GRU, so it will be discussed only a little. 

Finally, The reason for the poor performance of the 
TCN model is that the inflated convolution approach 
used by the TCN model expands the parametric field of 
view of the model but also loses essential information 
between the areas of view. At the same time, the task 
studied in this paper is that the vital information is 
hidden in each similar time step data. TCN is more 
suitable for the job of audio recognition. 

In summary, Conv GRU is suitable for tasks with a 
small number of features, a strong correlation between 
features task. 

 Conv2D GRU is suitable for many kinds of features, 
and the correlation between features is not clear. TCN is 
suitable for tasks with particularly long time steps, such 
as audio tasks. 

 

6. CONCLUSIONS 

This paper aims to overcome several drawbacks of 
traditional rnn and predict building energy consumption 
more accurately while dealing with complex energy 
consumption conditions. For overall consideration, we 
performed experiments under various time-step 
conditions. Predicting energy consumption would play a 
vital role in early response to peak loading (peak 
loading), power, or equipment regulation to ensure grid 
security. Moreover, suitable situations for each model 
are also analyzed to provide a reference for other 
application scenarios.   

In the best case, the Conv GRU has an RMSE value of 
around 400 and an R2 value of around 0.96. Compared 
with the cold consumpution value of 6000+ in most 
cases, the RMSE value of 400 is small enough, which 
means the performance of Conv GRU is good enough for 
practical use. In addition, the Conv GRU could achieve 
more accurate predictions than both GRU model and 
TCN model, which is 10% and 30% improvement, 
respectively. 

In summary, the Conv GRU could consistently 
achieve better performance in building cold 
consumption prediction than the other compared 
models, which could be the optimized alternative to a 
standard RNN. Additionally, it can be expected that the 
Conv GRU will outperform LSTM and GRU on most 
consumption prediction tasks with long time steps. 
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