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ABSTRACT 
There is a rising need for accurate battery state of 

health (SOH) diagnosis in electric vehicle maintenance 
and second-life evaluation. However, existing methods 
suffer from the transition from cell-level tests to real-
world vehicle applications due to the ignorance of 
incorporating laboratory tests with large-scale, time-
varying field data. This paper proposes a framework 
combining the system-level capacity calculation and cell-
level decoupling experiment for battery system capacity 
diagnosis. A modified regional capacity calculation 
method for online applications is presented, and the 
regional capacity of the battery under various 
temperatures and SOHs is experimentally determined to 
decouple various working conditions. This work 
highlights the opportunity to integrate laboratory test 
data to leverage unlabelled field data for capacity 
diagnosis while revealing the characteristics of battery 
capacity under different working conditions. 
 
Keywords: Lithium-ion batteries, electric vehicles, health 
diagnosis, field data, decoupling experiment  

NOMENCLATURE 

Abbreviations  
 EV Electric vehicle 
 SOH State of health 
 EM Electrochemical model 
 ECM Equivalent circuit model 
 IC Incremental capacity 
 CC Constant current 
 CV Constant voltage 
 OCV Open circuit voltage 
 SOC State of charge 
 L-M Levenberg-Marquardt 
 MAPE Mean absolute percentage error 
 RMSE Root mean squared error 

1. INTRODUCTION 
Rapid decarbonization of the transportation sector is 

an important but challenging demand for carbon 
neutrality pledges [1]. The transition to electric vehicles 
(EVs) is a viable way to decrease the carbon footprint of 
passenger cars in cities [2]. As the leading energy storage 
component of EVs, Lithium-ion batteries have gained 
wide attention in academic research and industrial 
applications [3]. However, batteries undergo inevitable 
degradation in terms of capacity and internal resistance 
due to the time-varying working conditions, this poses a 
great challenge for battery state of health (SOH) 
diagnosis [4]. 

Various approaches have been proposed in the 
literature to realize battery health diagnosis and 
estimation, which can be divided into either model-
based methods or data-driven methods [5]. Model-
based methods use mathematical equations or physics-
based model equations to describe battery dynamics and 
degradation behaviour [6]. Electrochemical models 
(EMs) and equivalent circuit models (ECMs) are widely 
used models. EMs use partial differential equations to 
depict battery degradation mechanisms like the loss of 
lithium inventory, the loss of active material in the 
electrodes, and the increase of internal resistance [7]. 
EMs can reach satisfying estimation accuracy, however, 
the computational complexity hinders their application 
[8]. Apart from that, ECMs are ubiquitously used for 
battery ageing modelling, they use circuitry elements to 
simulate the dynamic characteristics of the battery [9]. 
Bayesian filtering techniques and adaptive observers are 
commonly used for predicting the evolution of the 
parameters [10,11]. The ECM-based methods can 
achieve multi-parameter joint estimation, but the 
generalization ability is not satisfied. 

In contrast, data-driven methods use statistical 
theories or machine learning techniques to build models 
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to delineate the relationship between the features and 
the prediction targets [12], they have no requirements 
for detailed knowledge about chemical and 
electrochemical reactions underlying the battery. 
Multiple battery ageing features can be derived from the 
historical monitoring data of batteries through 
incremental capacity (IC) analysis, differential voltage 
analysis and differential thermal voltammetry [13–15]. 
The ageing features are trained by various kinds of 
machine learning-based algorithms such as support 
vector regression, artificial neural network, Gaussian 
process regression, long short-term memory recurrent 
neural network [16,17]. 

However, the existing methods either focus on 
controlled laboratory tests or barely EV field data. The 
results of laboratory tests lack the ability to fit the time-
varying, uncontrolled real-world scenarios, and the 
models are only trained on cell-level data. On the 
contrary, the results of field data-based methods are 
coupled with working conditions such as temperature, so 
the data labels (full discharge capacity under standard 
conditions) are missing. Therefore, it is vital to associate 
the cell-level laboratory test with system-level EV battery 
field data. 

To tackle the aforementioned issue, this paper 
proposed a health diagnosis framework for real-world 
electric buses that combines field data-based battery 
system capacity calculation and laboratory data-based 
cell-level capacity decoupling. The regional charging 
capacity is calculated in the field, and battery standard 
capacity under different temperatures, SOHs are 
measured by experiments to decouple capacity with 
temperature. 

2. EXPERIMENT & DATA COLLECTION 

2.1 Real-world EV dataset 

The real-world dataset used in this study is collected 
from the open lab of the National Big Data Alliance for 
New Energy Vehicles. According to the data transmission 
protocol, 73 data items including general vehicle states 
(such as velocity, position, accumulated mileage), 
subsystem data(such as battery system voltage, current, 
SOC, motor power), fault alarm (over-voltage, nan value, 
inconsistency fault), etc., are transmitted to the platform 
in real-time at a sampling frequency of 0.1Hz [18]. Data 
of a type of electric buses are used in this study, the 
specifications are listed below. 

 
 
 
 

TABLE I Specifications of the studied vehicle 

Parameter Value (Units) 

Curb weight 8270 kg 

Battery material LiFePO4 / Graphite 

Battery pack capacity 240 Ah 

Nominal voltage 537.6 V 

Driving range 300 km 

Pack configuration 2p168s 

2.2 Battery capacity decoupling experiment 

The experimental part aims at discovering the 
correlation between battery partial charging capacity, 
complete discharging capacity, and temperature. To this 
end, the experiment platform is built as shown in Fig. 1, 
where a four-channel battery tester (Arbin BT2000), a 
thermal chamber, testing batteries, and a host computer 
are included. The tester is used to provide current load 
of the predefined profile, and the voltage, temperature, 
charge/discharge capacity is recorded by the host 
computer. The tested batteries are 6 Ah 32700 cylindrical 
cells with LiFePO4 / Graphite chemistry. The thermal 
chamber is used to control the environmental 
temperature of the batteries, and thermal couples are 
attached to the surface of the batteries to measure the 
temperature. 
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Fig. 1 Experiment setup 

The overall experimental procedure can be 
described in Fig. 2, which has the following main steps:  
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1) Pretreatment: Pre-cycling is applied to each cell to 
activate and assess its performance. The cells were 
discharged to the cut-off voltage (2.0V) using 0.5C 
constant current (CC) and then rested for 30 minutes. 
Next, the cells were charged with a constant current-
constant voltage (CC-CV) charging mode (0.5C at the CC 
stage to 3.65V, then CV until the current dropped to 
0.05C). After another 30-minute rest, this discharge and 
charge process was repeated three times. 

2) Standard capacity test: This serves as the capacity 
calibration under various temperatures. Since the tested 
cells have different initial SOCs, they are firstly 
discharged to the cut-off voltage using 0.5C current. 
After 30-minute rest, the cells are charged with the CC-
CV profile which is the same as the pretreatment cycles. 
Then, rest for 30 minutes, and the cells are discharged at 
0.5C to the cut-off voltage. The current load and voltage 
response is shown in Fig. 3. 

3) Accelerated ageing test: If the capacity of the cell 
is not at the predefined SOH level, accelerated ageing 
test are used to adjust. The cells are charged with a CC-
CV profile (3C until 4.5 V, then change to CV step until the 
current drop to 0.05C), rest for 5 minutes, followed by a 
CC discharge step with 3C until the voltage drop to 1.8 V. 

Ten fresh cells and 80 aged cells with different SOHs 
are collected. We measured the charge and discharge 
curves at six different SOH levels (100%, 95%, 93%, 90%, 
87%, 85%) and six different ambient temperatures (-2 °C, 
5 °C, 15 °C, 25 °C, 35 °C, 45 °C), which made a 6×6 grid. 
For each cell, pretreatment is conducted first. After the 
standard capacity test for all the cells, we chose several 
cells that have the most similar capacity to the 
predefined SOH levels. Accelerated ageing tests are 
applied if the capacity is not exactly the requested. Then, 
standard capacity tests are utilized at each temperature 
level. 

Pretreatment
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Standard capacity test
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Change temperature
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All temperature
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Fig. 2 Experiment procedure 

 

Fig. 3 Standard capacity test load profile and voltage 
response 

3. METHODOLOGY 
The overall framework of the proposed battery 

system SOH diagnosis method is illustrated in Fig. 4, 
which consists of three main parts: system-level capacity 
calculation, cell-level decoupling test, and battery 
system SOH diagnosis. For the first part, field dataset of 
electric buses is used, after data pre-processing and 
transformation, qualified charging segments are 
collected. Combining Coulomb counting and IC analysis, 
the modified regional capacity is calculated using battery 
system field data. For cell-level decoupling test, we test 
battery charging/discharging capacity under different 
temperatures and SOHs, then a three-dimensional 
responding surface is drawn. Finally, for the SOH 
diagnosis part, the voltage interval and regional capacity 
for battery system is converted into cell scale, and 
quadratic equation solving is implemented to map the 
regional capacity into battery SOH under standard 
conditions. 

3.1 Modified regional capacity calculation 

Regional charging capacity is demonstrated to be an 
effective battery health indicator and is linearly 
correlated with the full capacity under standard 
conditions [19,20]. The calculation method of regional 
capacity is shown as follows: 

 ( ) ( )
( )

( )2

1

t V

r
t V

C I t dt =   (1) 

 1 int / 2peakV V V= −  (2) 

 2 int / 2peakV V V= +  (3) 

where rC  denotes the regional capacity, ( )I t  

represents the current at time t, ( )1t V  and ( )2t V  are 

the start and end time for the regional battery capacity 
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calculation of the voltage interval  int 1 2,V V V = , and 

peakV  is the terminal voltage corresponding to the IC 

peak. 
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Fig. 4 Framework of the proposed battery system SOH diagnosis method 

 
However, the regional capacity in existing methods is 

usually calculated under fixed temperature and low 
current rates. In such cases, the corresponding open 
circuit voltage (OCV) range is also fixed, ensuring a linear 
relationship between the regional capacity and the 
overall battery capacity. But in real-world electric vehicle 
applications, different charging instances involve varying 
temperatures and charging currents, so the IC curves will 
shift from left to right due to the decrease of 
temperature, as illustrated in Fig. 5. This makes the fixed-
interval regional capacity method invalid. 

Hence, we developed a modified regional capacity 
calculation method with moving voltage intervals, which 
is suitable for electric vehicle battery packs operating 
under complex and varying conditions, defined by 

( )rC  : 

 ( ) ( )
( )

( )2

1

t V

r
t V

C I t dt



 =   (4) 

where 1V   and 2V   are the start and end voltages 

around the IC peak region. 
The determination of the voltage interval position 

and length is based on the usage behaviour of the 
studied battery. From statistical analysis, we found that 
the charging voltage is mostly between 560 V and 572 V, 
and the position of the second IC peak is located around 
569 V [18]. Therefore, we set [560 V, 572 V] as the base 
interval, and the actual interval of each charging curve is 

calculated by the difference between the second IC peak 
position and 569 V. The final voltage inteval is defined as 

 1 2,  12VV V V  = = , with 

 ( )1 560 569peakBV V= + −  (5) 

 ( )2 572 569peakBV V = + −  (6) 

Two exampled IC curves and their corresponding 
voltage intervals are shown in Fig. 5. 

 

 

Fig. 5 Diagram of the modified regional capacity method 
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3.2 Three-dimensional responding surface fitting 

Having the system-level voltage interval for regional 
capacity calculation determined, it is necessary to 
convert system-level data to cell-level, so that the 
decoupling experiment can be implemented. Since the 
battery pack has a 168-serial configuration, the 12 V 
voltage length ( V ) is equal to 0.0714 V in cell-level. 
When transitioning the regional capacity, considering 
the nominal capacity of the battery system is 240 Ah, and 
the nominal capacity of the tested battery cell is 6 Ah, we 

can convert the system-level regional capacity rC  to 

cell-level ,r cellC  as: 

 , 6
240

r
r cell

C
C


 =   (7) 

After converting the calculated battery system 
regional capacity in EV in real-time to a cell-level regional 
capacity, we should map this value to battery discharge 
capacity at standard discharging rate and temperature, 
i.e., SOH, which is the purpose of the decoupling 
experiment illustrated in Section 2.2. Therefore, a three-
dimensional responding surface fitting method is needed 
to establish the relationship between temperature, SOH, 
and regional capacity, and further map the regional 
capacity to standard SOH. Here, quadratic polynomial 
fitting is implemented, which will fit the three-
dimensional surface as the following equation: 

 
2 20z z ax by cx dy fxy= + + + + +  (8) 

where x, y, and z are three axes, and z0, a, b, c, d, and f 
are model parameters to be identified. 

Levenberg-Marquardt (L-M) algorithm is applied in 
this study to identify the parameters. The L-M algorithm 
stands out as a highly efficient technique for fitting 
parameters in nonlinear models [21]. Combining the 
rapid convergence characteristics of the Gauss-Newton 
steepest descent method with the adaptive capabilities 
of a neural network, the L-M algorithm demonstrates 
exceptional performance in model parameter 
estimation. 

4. RESULTS & DISCUSSION 

4.1 Comparison of capacities under different conditions 

The capacities under different SOHs and 
temperatures are shown in Fig. 6. It can be seen that the 
regional charging capacity decreases with decreasing 
temperature at every SOH level. It is worth noted that 
the capacity difference between various SOHs at 45 °C is 
1.15 Ah, but only 0.24 Ah at -2 °C, indicating that under 
low temperatures, the available capacities of both fresh 
and aged cells are low. On the other side, for the cell with 

100% SOH, the capacity difference between 45 °C and -
2 °C is 1.5 Ah, and for the cell with 85% SOH, the 
difference is only 0.57 Ah, indicating that the effect of 
temperature on the capacity of fresh cells is greater than 
that of aged ones. 

 

Fig. 6 Regional capacity at different temperatures and 
SOHs. 

4.2 Decoupled battery capacity analysis 

The fitted three-dimensional capacity responding 
surface is shown in Fig. 7. Using the polynomial equation 
given by Eq. (8), the surface fitting is accurate with an R-
square ( 2R ) value of 96%. Through L-M parameter 
identification, the parameters of Eq. (8) is determined, 
denote SOH as S, temperature as T, the final equation of 
the responding surface can be written as Eq. (9). 

 

 

Fig. 7 Three-dimensional capacity responding surface 
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Fitting errors are illustrated in Fig. 8. The fitted 
capacity is linearly correlated to the measured capacity 
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of the test, which means the fitting result is accurate. The 
mean absolute percentage error (MAPE) and the root 
mean squared error (RMSE) are used as metrics of the 
fitting results. The MAPE of all the 36 points is 2.56 %, 
and the RMSE is 0.095 Ah, which further validated the 
fitting accuracy. 

 

Fig. 8 Error analysis of the surface fitting 

Based on the Three-dimensional capacity responding 
surface and Eq. (9), we can map the regional capacity 
under various temperatures into standard battery SOH. 
Eq. (9) can be transformed into a general quadratic 
equation form as 

 
( )

( )

2

4 2

,

10.94 0.12 22.05

     3.82 10 0.07 8.62 0r cell

S T S

C T T−

− + +

 +  + + =
 (10) 

Given ,r cellC  and T, the battery SOH can be 

calculated by Eq. (10) and the quadratic equation root 
formula. 

Based on the mentioned procedure, Table II displays 
sample results for the diagnosis of battery system SOH. 
The data illustrates how the regional charging capacity of 
the battery system can be reliably mapped to the 
battery's SOH under standard conditions, thus 
confirming the efficacy of the proposed framework. 

TABLE II SOH diagnosis results 

Test No. 
Regional 

cap. (Ah) 

Temp. 

(°C) 
SOH (%) 

1 149.6 39.6 97.5 

2 136.8 29.5 95.0 

3 126.2 35.8 88.8 

4 121.9 33.1 87.6 

5 112.1 32.8 84.3 

5. CONCLUSIONS 
Integrating real-world EV battery system capacity 

calculation with laboratory-based experimental tests is 
an important but challenging way to realise battery 
system SOH diagnosis. To tackle this issue, this paper 
presents a battery SOH diagnosis framework combining 
system-level regional capacity calculation and cell-level 
capacity decoupling test. At system-level, a regional 
capacity calculation method with moving voltage 
intervals is designed based on Coulomb counting and 
incremental capacity analysis. At cell-level, battery cell 
charging and discharging capacities under different 
temperatures are experimentally measured. To integrate 
these two parts, an equivalent scale converting method 
is proposed from battery system to battery cell, and 
battery SOH under standard working conditions are 
derived by three-dimensional responding surface 
mapping. The results show that the capacity responding 
surface is fitted accurately, and the battery SOH can be 
effectively calculated by the proposed method. This 
study presents a feasible approach to bridge the gap 
between laboratory tests and electric vehicle field 
application. This method can be widely applied in battery 
health management, second-life evaluation, and 
maintenance scheduling. 
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