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ABSTRACT 
This study presents an efficient framework for 

locating and classifying faulty Photovoltaic (PV) panels 
from Unmanned Aerial Vehicle (UAV) thermal infrared 
images. First, aerial triangulation based on 
photogrammetry is used to obtain thermal infrared 
images of PV panels with coordinate information, then, 
individual PV panels are segmented based on High-
Resolution Network (HRNetV2-W32), finally, the panels 
are fed into residual net (ResNet-50) to classify the fault 
types. Results showed that the panel segmentation 
accuracy reaches 98.54%, the classification accuracy 
reaches 88.74%, and the coordinate error is better than 
0.033m. 
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NONMENCLATURE 

Abbreviations  

PV Photovoltaic  
UAV Unmanned Aerial Vehicle  
HRNet High-Resolution Network  

TIRDOM 
Thermal Infrared Digital Orthophoto 
Map  

CNN Convolutional Neural Networks  

Symbols  

m Meter  
s Second  

 

1. INTRODUCTION 
In recent years, the photovoltaic power generation 

has grown exponentially, and the global photovoltaic 

panel construction and power generation are showing a 
blowout trend[1]. Designed life of photovoltaic power 
plants is 25-30 years, during which time defects will 
inevitably occur. The defects may reduce power 
generation, shorten battery life, and cause panel 
burnout in severe cases. Therefore, timely detection of 
photovoltaic panel defects can promote the safe and 
efficient operation of photovoltaic power plants[2]. 

There are two types of fault detection for solar 
panels: detection based on electrical signals (current and 
voltage) and detection based on images (vision)[3, 4]. 
Thermal infrared images with a resolution of up to 0.02 
m have proven to be sufficient for detecting defect types 
in practical applications, and thermal infrared photos 
with a resolution of 0.02 m are more efficient at the 
photographic stage than millimeter-scale RGB images. 
With the development of deep learning technology, 
more and more research utilized deep learning 
algorithms to panel segmentation and photovoltaic fault 
identification from thermal infrared images, including 
VGG-16, Mask R-CNN, etc[5, 6]. They have been effective 
at categorizing specific photos or using masks to detect 
problematic cells on photographs, but they have been 
unsuccessful in segmenting into different kinds of 
defects and have only segmented overheated panels. In 
addition, it is also important to locate defective panels in 
practical applications. A study has used the Structure 
from Motion - MultiView Stereo (SfM-MVS) to acquire 
electric field orthophotos, segment PV panels based on 
geometric features, and use convolutional neural 
networks to detect and classify panel faults[7]. However, 
the detected types do not clearly reflect the true 
electrical fault characteristics or indicate the cause of the 
fault.  

In this study, the thermal infrared camera mounted 
on a UAV with Real-time kinematic (RTK) and inertial 
motion unit (IMU) was used to take images of PV plants. 
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The aerial triangulation was employed to generate 
thermal infrared Digital Orthophoto Map (TIRDOM), and 
then HRNetV2-W32 and ResNet-50 deep learning models 
were used to segment individual PV panel images and 
classify panel fault types, respectively, to obtain panel 
information with high-precision coordinates and faulty 
types. Six power stations in Guangzhou were used to 
assess the performance of the proposed method. 

2. DATASET ACQUISITION AND METHODS 
The technical route of this paper is shown in Fig.1: 

first, the data acquisition and pre-processing stage, using 
the thermal infrared camera on the UAV to capture the 
photos of the PV plant, based on the photogrammetry 
algorithm to process the photos to generate the TIRDOM 
of the PV plant; secondly, the PV panel segmentation 
stage, using the semantic segmentation algorithm to 
segment the TIRDOM into a binarized mask of the PV 
panel and the background, using the mask to crop the PV 
panels on the TIRDOM into separate panel images; 
finally, using the classification model to classify the 
defects of the PV panels. 

 
Fig.1 Photovoltaic panel defect location and classification 

framework technical route 

2.1 Data acquisition and orthophoto production 

The data acquisition mission was performed on clear 
and cloudless days, with vertical panel shots that would 
allow the thermal infrared sensor to pick up the 
maximum amount of radiation from the PV panels; the 
heading and lateral overlap were set to 80% and 75%, 
respectively. The camera used was a DJI Zenmuse H20T 
equipped with an RGB with a laser ranging module and a 
thermal infrared camera (TIR), with the specific 
parameters of the thermal infrared sensor shown in 
Table 1. The camera-equipped UAV is a DJI MATRICE 300 
RTK, which provides highly accurate POS information. A 
total of 189,632 images were taken from the six power 
stations in Guangzhou, Guangdong Province, China (Lon: 
112°57' - 114°3', Lat: 22°26' - 32°56' ) with a combined 
capacity of 700 MW. 

Table.1 H20T thermal infrared sensor parameters 
Thermal infrared 

sensor types 
Uncooled Vanadium Oxide (VOx) 

Microbolometer 
DFOV 40.6° 

Focal length 13.5 mm 
Temperature 

measurement range 
-40℃ to 150℃ (high gain mode) 

-40℃ to 550℃ (low gain mode) 

Sensitivity (NETD) ≤50 mK @ f/1.0 
Photo resolution 640×512 

To obtain the coordinate information of the 
photovoltaic panel, we use PhotoScan to read the photo 
information, add the ground control point correction 
model after aerial triangulation, and finally generate a 
high-precision thermal infrared orthophoto. 

2.2 Photovoltaic fault detection algorithm 

In order to locate the position of the photovoltaic 
panel and classify the types of defects and faults more 
easily, it is necessary to segment the PV panels from the 
middle image using semantic segmentation networks. 
Most semantic segmentation networks use 
convolutional neural networks (CNN) to extract image 
features in the encoder stage and transposed 
convolution to restore the images to their original 
resolution in the decoder stage, such as U-Net, 
DeconvNet, etc[8, 9]. This will lose some information 
from the original high-resolution image, which will 
reduce the accuracy of segmentation. This study 
employed the HRNetV2-W32 network as the 
segmentation network to maintain the high-resolution 
image's original information and enhance segmentation 
pixel accuracy[10]. By connecting image features from 
different resolutions in parallel to create interaction 
between image features from different resolutions, 
HRNet maintains the features from high-resolution 
images. First, feature vectors from images with four 
different resolutions are extracted using convolutional 
layers of different resolutions; then, these feature 
vectors are unified to the maximum resolution by 1×1 
convolutional layers and summed; finally, a softmax 
linear classifier is used to predict the segmentation map. 

The training set contains 18,000 PV panels, of which 
10,000 panels were taken from the power plant with the 
highest spatial resolution (0.018 m) and the remaining 
8,000 panels were randomly selected from the other five 
power plants. Dice loss was chosen as the loss function 
of the optimizer, which is a function that measures the 
similarity of two samples and takes values in the range of 

0-1, with the formula： 

𝑠 =  
2|𝑋 ⋂ 𝑌|

|𝑋| + |𝑌|
                                    (1) 
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where, |𝑋 ⋂ 𝑌| represents the intersection of 𝑋  and 
Y, |𝑋| and |𝑌| represent the number of elements of 
𝑋 and Y. 

Different defect types can provide suggestions for 
post-maintenance of Photovoltaic power plants, and the 
classification of PV panel defects based on thermal 
infrared images is essential. In this section, ResNet-50 
was chosen as the classification network model because 
it has high accuracy performance on the ImageNet 
dataset by rewriting its fully connected layer to output a 
1×7 vector output[11]. 

 
Fig.2 Panel type, (a) Bypass diode operation, (b) Group string 

open circuit, (c) Clutter covering, (d) Panel breakage, (e) 
Dusty, (f) General hot spot, (g) Normal Panel 

Production of classification data sets: after 
segmentation, the resolution of most panels did not 
exceed 70 pixels, and the image size of photovoltaic 
panels was resampled to 64×64 pixels for the 
convenience of network training. The fault type is shown 
in Fig.2. The test set randomly selected 10% of images 
from each type of dataset for accuracy validation, and 
the remaining 90% of samples were randomly selected 
by the algorithm in each epoch, with a ratio of 8:2 
between the training and validation sets. In network 
training, random flips and rotations were used for image 
enhancement, an Adam optimizer was selected to 
update the network weights, and a cross-entropy loss 
function was used as a loss to evaluate the classification 
accuracy of the model. In the multi-classification 
method, the cross-entropy loss function is: 

𝐿 =  −
1

𝑁
∑ ∑ 𝑦𝑖𝑐 log(𝑝𝑖𝑐)

𝑀

𝑐=1𝑖

                    (2) 

where, M denotes the number of categories; y_ic is the 
sign function, which is 1 when the true category of 
sample i is equal to c and 0 otherwise; p_ic is the 
probability that sample i belongs to category c. 

The segmentation result accuracy verification 
selected the intersection of union (IoU), precision, recall, 
and f1 score to measure, and the calculation method is 
as follows: 

𝐼𝑜𝑈 =
𝑇𝑃

 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
                           (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                           (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                 (5) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
             (6) 

where, TP (True Positive) is the image element that is 
predicted correctly, FP (False Positive) is the image 
element that divides the background into PV panels, and 
FN (False Negative) is the image element that divides the 
PV panels into the background. 

Classification accuracy was evaluated using overall 
accuracy (OA) and Kappa coefficient, calculated as: 

𝑂𝐴 =
1

𝑁
∑ 𝑥𝑖𝑖

𝑟

𝑖=1
                                  (7) 

𝐾𝑎𝑝𝑝𝑎 =
𝑁 ∑ 𝑥𝑖𝑖 − ∑ (𝑥𝑖+ × 𝑥+𝑖)𝑟

𝑖=1
𝑟
𝑖=1

𝑁2 − ∑ (𝑥𝑖+ × 𝑥+𝑖)𝑟
𝑖=1

          (8) 

where, 𝑁  is the total number of samples, 𝑥𝑖𝑖  is the 
number of samples labeled as class 𝑖  that were 
assigned to class 𝑖 , 𝑥𝑖+  is the number of samples 
labeled as class 𝑖, and 𝑥+𝑖  is the number of samples 
assigned to class 𝑖. 

3. RESULTS 

In the positioning accuracy verification, the Baiyun 
Electric Equipment Co. (RGB DOM spatial resolution 
0.007m, TIRDOM spatial resolution 0.018m) was 
selected as the verification area, and the visible DOM 
(horizontal positioning accuracy better than 0.03m) was 
generated after aerial triangulation of the visible image 
corrected by ground control points as a reference to 
verify the positioning error of thermal infrared DOM on 
the PV panel. We evenly selected 9 points on the DOM 
of the whole power plant as validation points. It is 
verified that the maximum error of horizontal positioning 
in the PV panel positioning stage is 0.257m for x and 
0.123m for y, which means the positioning error is less 
than 0.33m. 

In the panel segmentation, the test set was selected 
from two different aerial height photovoltaic panels, as 
Fig.3 illustrated, where (1) (2) are photovoltaic panel 
images with spatial resolution of 0.018m, 0.024m, (a) (b) 
(c) are TIRDOM, binarized mask images after semantic 
segmentation, and overlapping images with the TIRDOM 
after vectorization of the mask image. According to 
Table.2, the precision of image segmentation with spatial 
resolution of 0.018m is 98.54%, and IoU is 95.73%. The 
precision of image segmentation with spatial resolution 
of 0.024m is 93.60%, and IoU is 92.61%. 

The classification results are shown in Table.3. It can 
be seen that using ResNet-50 to classify photovoltaic 
defects, the OA is 88.74% and the Kappa accuracy is 0.86. 
Among them, group string open circuit, panel breakage, 
dust, and normal panel accuracy are reached 100%, the 
accuracy of bypass diode operation is 83.33%, the 
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accuracy of clutter covering is 36.84%, and the accuracy 
of general hot spot is 91.1%. Some of the highlights that 
were either too large or too little were classified as 
general hot spots or noise of typical panels, which lead 
to poor clutter coverage accuracy. 

 
Fig.3 Test set split results 

Tabel.2 Panel segmentation accuracy 

 Spatial 
resolution 

IoU Precision Recall F1 Score 

Test 0.018m 95.73% 98.54% 97.10% 97.81% 
Test 0.024m 92.61% 93.60% 98.87% 96.16% 

Tabel.3 Panel segmentation accuracy 

Model Parameters Training time OA Kappa 

ResNet-50 25.7M 1104.53s 88.74% 0.86 

4. CONCLUSIONS 
The method proposed in this paper can accurately 

locate the defects of PV panels and classify the defect 
types, providing reference on defective panels for PV 
power plants to facilitate their operation and 
maintenance. After segmentation, the center of the 
panel is used as the localization point, and the 
localization error is less than 0.33m with a spatial 
resolution of 0.018m and no ground control points, 
which can ensure that the localization point of defective 
panels is within the panel relative to PV panels with 
length and width larger than 1m; the f1-score of panel 
segmentation surpassed 95%, illustrating the model 
could accurately segment most of the PV panels. The 
accuracy of ResNet-50 in the defect classification stage is 
88.74%. 
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