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ABSTRACT 
The booming electric vehicle (EV) charging facilities 

play a vital role in connecting road transport networks to 
the urban power grid, as they have internal smart 
converters with four-quadrant power regulation 
capability. These converters can provide reactive power 
to regulate the voltages of urban distribution power 
grids. Considering the high scarcity of urban spatial 
resources, there are many restrictions on configuring 
additional capacitors or other voltage regulating devices. 
It is of significance to accurately assess the volt/var 
support capability from the charging facilities on urban 
grid voltage regulation. This paper constructs a road 
traffic network model and EV behavior characteristic 
models for private cars, cabs, and urban service vehicles, 
respectively. Then, a method for spatial and temporal 
charging load prediction as well as reactive power 
flexibility assessment is proposed considering dynamic 
traffic flow. The assessment results are adopted as 
boundaries for chargers participating the volt/var 
regulation of urban power distribution system. The 
voltage qualification rate indicators are investigated to 
verify the effectiveness of the proposed regulation 
method. The results of this paper are helpful for 
understanding the coupled urban electrified road 
transportation and power system facilities from a new 
perspective of volt/var regulation. 
 
Keywords: electric vehicle, dynamic traffic flow, charging 
facility, volt/var regulation  

1. INTRODUCTION 
In the context of the global energy transition, the 

replacement of fuel vehicles by electric vehicles (EVs) is 
considered as an effective way to solve the problems of 
fossil energy shortage and environmental pollution[1–3]. 
Under the influence of the gradual improvement of 

technology and purchase incentive policies, global sales 
of EVs continue to rise. According to the statistics of the 
International Energy Agency, the global annual sales of 
EVs exceed 10 million units during 2022. In the face of 
the rapid growth of EV number, demand for charging 
facilities has become more urgent. By the end of 2022, 
there has been a total of 2.7 million chargers 
worldwide[4]. 

The core device of EV chargers is the bridge 
converter composed of power electronics, which can 
control the bi-directional flow of active and reactive 
power. It has been demonstrated that chargers can 
provide reactive power compensation to the power 
system[5–9]. The current power system integrates a large 
number of distributed renewable energy sources and 
unstable loads, who lead to voltage instability in the 
system. Utilizing the reactive power compensation 
capability of the chargers can exactly achieve volt/var 
regulation to smooth out voltage fluctuations. 

The active-reactive power output model for EV 
chargers was developed in [10]. The four-quadrant 
power operating characteristics of the chargers were 
also utilized for day-ahead optimization with the 
objective of minimizing the peak-to-valley difference and 
voltage deviation. Reference [11] proposed a two-stage 
optimization method to regulate the EV chargers for 
voltage regulation, thus reducing the use of on-load tap 
changer. Reference [12] developed a voltage regulation 
model considering the reactive power response of EV 
chargers and established a distributed regulation 
framework based on model predictive control. The 
volt/var regulation capability of the chargers is highly 
correlated with their active power output, and these 
above models just roughly predict the active power 
demand of EVs, without considering the dynamic traffic 
flows. 

Energy Proceedings
Vol 36, 2023

ISSN 2004-2965

____________________

# This is a paper for the 9th Applied Energy Symposium: Low Carbon Cities and Urban Energy Systems (CUE2023), Sep. 2-7, 2023, Matsue & Tokyo, Japan. 



 2  

Studies on charging demand prediction have been 
carried out. A probabilistic model of EV charging loads 
was proposed considering the effect of charging start 
time in [13]. Reference [14] predicted EV arrival rates 
through hydrodynamic modeling combined with M/M/s 
queuing theory for charging demand prediction. 
Reference [15] utilized a Gaussian distribution function 
for EV charging time and a Weibull distribution function 
for daily driving time for Monte Carlo sampling based 
charging loads prediction. Reference [16] determines the 
probability of arrival of charging stations for EVs from a 
Markov-chain traffic model and a teleportation approach 
to predict the charging demand. There are also several 
studies that utilized big data techniques to combine 
multiple types of data to learn about EV travel and 
charging demand characteristics[17–20]. For example, a 
long short-term memory neural network was developed 
in [17] for charging demand prediction based on EV data 
from Beijing, China. 

Based on the above studies, this paper develops 
volt/var regulation technique utilizing EV chargers in 
urban power distribution systems considering dynamic 
traffic flow. Firstly, models for road network and 3 types 
of typical urban EV are built. Next, the spatio-temporal 
charging load is predicted and reactive power flexibility 
of EV chargers is assessed. Then, the assessment results 
are used as boundaries for volt/var regulation of urban 
distribution systems, and voltage qualification rate 
indicators are proposed for quantifying the regulation 
effect. Finally, case studies based on the IEEE 33-bus 
distribution and road network coupling system are 
conducted to verify the effectiveness of the proposed 
technique. 

2. ROAD NETWORK AND EV BEHAVIOR MODELS  

2.1 Road network model 

Graph theory is widely used in urban road network 
modeling[21]. In this paper, the undirected graph 

( ),G V E  is adopted to describe the topology of the road 
network, where V is the set of roads in the network and 
E is the set of nodes in the network. The topology of the 
road network can be represented by the matrix D in 
math, and the element dij in D is determined by (1). 
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where lij represents the length of roads between directly 
connected nodes of the network, and ∞ indicates that 
there is no direct road connection between two nodes. 

For example, the matrix D of the road network topology 
shown in Fig. 1 is shown in Table 1. Based on the matrix, 
the shortest path between the road network nodes can 
be found by Dijkstra algorithm. 

2.2 EV behavioral characteristic models 

EV behavior characteristic models for typical urban 
EVs are developed, and private cars, cabs, and urban 
service vehicles are considered. The probability 
distribution curves of their daily travel starting moments 
are obtained after fitting based on the statistics provided 
by the National Cooperative Highway Research Program 
(NCHRP 187)[22]. 

Private cars are parked for long periods of time and 
can be charged at all times except during commute 
driving. Considering the economy of charging, slow 
charging is generally performed when the SOC is below 
the threshold SOCp. 

The parking time of cabs is short. Generally, when 
the remaining SOC is lower than the threshold SOCc , the 
cab has fast charging demand. Considering the 
acceptance ability of different users for the risk of power 
shortage, the SOCc is set to obey the uniform 
distribution between [0.2, 0.3]. 

Urban service vehicles are usually driven during the 
day and parked at night. Fast charging demand occurs 
when SOC is below the threshold SOCf1 during working 
hours. Slow charging demand is generated when the 
spare time SOC is below the threshold SOCf2. 

3. SPATIO-TEMPORAL CHARGING LOAD PREDICTION 
AND REACTIVE POWER FLEXIBILITY ASSESSMENT 

3.1 Dynamic traffic flow and charging load prediction 

 
Fig. 1 Road network topology 

Table 1 Road network topology matrix 

Node 1 2 3 4 5 6 7 

1 0 l12 ∞ l14 ∞ l16 ∞ 

2 l12 0 l23 l24 ∞ ∞ ∞ 

3 ∞ l23 0 ∞ l35 ∞ l37 

4 l14 l24 ∞ 0 l45 l46 ∞ 

5 ∞ ∞ l35 l45 0 ∞ l57 

6 l16 ∞ ∞ l46 ∞ 0 l67 

7 ∞ ∞ l37 ∞ l57 l67 0 
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Urban vehicles are affected by the degree of road 
traffic congestion during driving so that travel at 
different speeds on different roads. In this paper, the 
change of traffic congestion caused by EVs driving into 
the road is considered to realize the dynamic simulation 
of traffic flow speed. 

Vehicle speed of road r considering dynamic traffic 
flow is calculated by 

 0,
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where 0,rv  is the free-flow speed of the road r, which is 
generally the upper limit speed. rq  is the general traffic 
flow of the road r; 

,EV rq  is the change in traffic flow 
caused by the planned entry of EVs. rC  is the maximum 
traffic flow of the road r. β is the road resistance 
factor[23]. 

With the given origin-destination matrices of the 
three types of EVs in a day, and default the drivers 
choose the shortest path to the destination, the set of 
shortest paths R  can be obtained by Dijkstra 
algorithm. Then, the road network topology matrix is 
utilized to obtain the distance dr of road r, and the time 
required for each road segment ΔTr can be calculated by 

 r
r

r

d
T

v
 = , (3) 

The total driving time from origin to destination can 
be calculated by 

 
R
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r
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Based on the EV charging characteristics presented 
in 2.2, determine whether the EV needs to be charged 
when it is located at each node. The calculation on each 
road segment is performed one by one to finally obtain 
the fast charging and slow charging requirements for 
each node for 24h in a day. 

3.2 Reactive flexibility assessment of charging facilities 

The core element of the charging facility is the bridge 
converter, and there exists an upper limit to the total 
power passing through the bridge converter[24]. 
Therefore, the reactive power flexibility of the charger is 
directly related to its active power output, and the 
maximum available reactive power capacity is shown in  
(5) and Fig. 2[25]. 

 2 2

,maxi i iQ S P= − , (5) 

where Si is the rated total power of charger i, and Pi is 
the active power output from charger i. 

The reactive power flexibility of a power system bus 
is an aggregation of the reactive power flexibility of the 
chargers connected to it, denoted as 

 ,max ,max

j

j i

i

Q Q
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=  , (6) 

where 
,maxjQ  is the maximum available reactive 

capacity of bus j and 
j  is the set of chargers 

connected to bus j. 

4. POWER DISTRIBUTION SYSTEM VOLT/VAR 
REGULATION CONSIDERING EV CHARGERS  

4.1 Volt/var regulation model 

The volt/var regulation model is based on improved 
AC optimal power flow (OPF). The minimizing the sum of 
voltage deviations at each bus of the whole network has 
been added as an objective function to the OPF, as 
shown in (6). 
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where Nbus is the total number of buses. Vj is the voltage 
of bus j. Vrated is the rated voltage. 

The constraints of the volt/var regulation model 
include available reactive power capacity constraints, 
distribution network voltage constraints, line capacity 
constraints and power flow constraints. 

 ,maxj jQ Q , (8) 

 ,min ,maxj j jV V V  , (9) 

 ,min ,maxjk jk jkS S S  , (10) 
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Eq. (8) and Eq. (9) are the available reactive power 
capacity constraint and voltage constraint of bus j, 
respectively. ,minjV  and ,maxjV  denote the lower and 
upper limit of voltage of bus j, respectively. Eq. (10) is 

       
 

Fig. 2 Reactive flexibility of EV charger 
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the capacity constraint of line between bus j and bus k. 

,minjkS  and 
,maxjkS  denote the lower and upper limit of 

the line capacity, respectively. 
jkS , 

jkP  and 
jkQ  

denote the apparent power, active power, and reactive 
power from bus j to bus k, respectively. Eq. (12) and Eq. 
(13) are the power flow constraints, where load

jP  and 
load

jQ  denote the active and reactive power of the load 
at bus j, respectively; 

jk  denotes the difference in the 
phase angle of the voltage between bus j and bus k; 

jkG  
and 

jkB  denote the conductance and susceptance 
values of the jth row and kth column of the nodal 
admittance matrix, respectively. 

For the proposed regulation model with OPF as the 
core, the interior point algorithm is the efficient solution 
method. The solver such as IPOPT can be called to solve 
the optimization[26]. 

4.2 Voltage qualification rate assessment 

In order to quantify the effect of volt/vat regulation, 
two voltage qualification rate indicators are proposed. 
These include average voltage deviation indicator Id and 
voltage quality rate indicator Iq, which are calculated by 
(14) and (15), respectively. 
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where 
,h jV  is the voltage of bus j at hour h and hN  is 

the total number of hours included in the statistics. 
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where hR  is the voltage quality mark for the hth hour, 
calculated as: 
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5. CASE STUDY 
In this section, a road network coupled with an IEEE 

33-bus system is constructed. The road network has a 
total of 32 nodes, corresponding to nodes 1-32 of the 
power system, respectively. The topologies of the power 
system and the road network are shown in Fig. 3 and Fig. 
4. Each road node is equipped with 40 slow chargers and 
20 fast chargers. 

In the case studies, there are 200 private cars, cabs, 
and urban service vehicles. At the initial moment, the 
number of EVs at each node is shown in Fig. 5. 

Based on the dynamic traffic flow and charging 
demand prediction method proposed in this paper, the 
charging power at each node for 24 hours is obtained. 
The fast charging and slow charging power are shown in 
Fig. 6 and Fig. 7, respectively. 

It can be seen that most of the charging loads during 
the daytime are dominated by fast charging, while the 
charging loads during the nighttime are dominated by 
slow charging. Fig.8 further shows the number of 
different types of EVs charged at different times. 

More conclusions are obtained from Fig. 8. The fast 
charging power during the daytime is mainly caused by 
cabs. This is because cabs are always on the move and 
consume more power, which leads to charge in the 
middle of the day. And in order not to affect working, 
they all choose fast charging. Besides, there are also a 
small number of private cars that charge during the day. 
Because they have a long commute to work, their initial 

 
 

Fig. 3 Topology of power system 
 

 
Fig. 4 Topology of road network 

 

 
Fig. 5 The initial number of EVs at each node 
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charge is not sufficient for the return trip. As a result, 
they charge during daytime working hours. Urban service 
vehicles are generally charged at night. 

Based on the predicted charging power, the voltage 
at each bus of the distribution network is calculated in 24 
hours, as shown in Fig. 9.  

The results show that the voltage fluctuation of the 
distribution network is large and the voltage decrease 
from the front to the end. The front-side voltage is about 
to exceed the upper limit, while the back-side voltage is 
about to exceed the lower limit, and there is an urgent 
need to take means to regulate the voltage. After 
adjustment using the volt/var regulation method 
proposed in this paper, the voltage at each bus of the 
distribution network in 24 hours is shown in Fig. 10. 

The results show that after volt/var regulation, the 
voltage at all buses is within the range of [0.994, 1.004]. 
The fact that the voltage is close to the rated voltage 
implies an improvement in the quality of power supply 
and also helps to reduce the network losses. The voltage 

 
Fig. 6 Fast charging power 

 
Fig. 7 Slow charging power 

 

 
 

Fig. 8 Charging data of different types of EVs 
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Fig. 9 Bus voltage in 24 hours 
 

 
 

Fig. 10 Bus voltage after volt/var regulation 

Table 2 Voltage qualification indicators 

 Before regulation After regulation 

Id 0.031079 0.000528 

Iq 70.1% 100% 
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qualification indicators before and after the regulation is 
shown in Table 2. 

After regulation, id is reduced to 0.0016 times the 
original value, indicating that the deviation of the bus 
voltages from the rated value is substantially reduced. iq 
grows from 70.1% to 100%, indicating that the voltage at 
all nodes is at a good quality level, reflecting the 
effectiveness of the present method. 

6. CONCLUSIONS 
This paper exploits the volt/var regulation ability of 

EV charging facilities in urban power distribution systems 
considering dynamic traffic flow. Firstly, a road network 
model based on graph theory and EV behavioral 
characteristic models for private cars, cabs and urban 
service vehicles are built. Then, a method for spatio-
temporal charging load prediction and reactive power 
flexibility assessment is proposed based on EV origin-
destination matrix and Dijkstra dynamic path search. The 
assessment results are used as boundaries for volt/var 
regulation of urban distribution systems, and voltage 
qualification rate indexes are proposed for quantifying 
the regulation effect. Finally, volt/var regulation case 
studies based on the IEEE 33-bus distribution and road 
network coupling system with the participation of EV 
chargers are carried out.  

The results show that the technique proposed in this 
paper is accurate in predicting the demand for charging 
of three types of EV. The volt/var regulation method can 
effectively improve the voltage quality at each node of 
the distribution network, as evidenced by the significant 
changes in the voltage qualification rate indicators. 
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